2个回答
展开全部
两边同时积分最后化成F(X)的平方=多少,具体不求了,应该会作的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)F(x)=xe^x/[2(1-x)^2]
F(0)=1
f(0)=0
F(x)=∫f(x)dx
∫f(x)F(x)dx=∫F(x)dF(x)=[F(x)]^2/2
∫xe^x/[2(1-x)^2]dx=(1/2)∫[1-(1-x)]e^xdx/(1-x)^2
=(1/2)∫e^xdx/(1-x)^2-(1/2)∫e^xdx/(1-x)
=(1/2)e^x/(x-1)+(1/2)∫e^xdx/(1-x)^2 -(1/2)∫e^xdx/(1-x)^2
=(1/2)e^x/(x-1)
e^x/(1-x)=F(x)^2
F(x)=e^(x/2)/√(x-1)
f(x)=F'(x)=(1/2)e^(x/2)/√(x-1) - (1/2)e^(x/2)/√(x-1)^3
F(0)=1
f(0)=0
F(x)=∫f(x)dx
∫f(x)F(x)dx=∫F(x)dF(x)=[F(x)]^2/2
∫xe^x/[2(1-x)^2]dx=(1/2)∫[1-(1-x)]e^xdx/(1-x)^2
=(1/2)∫e^xdx/(1-x)^2-(1/2)∫e^xdx/(1-x)
=(1/2)e^x/(x-1)+(1/2)∫e^xdx/(1-x)^2 -(1/2)∫e^xdx/(1-x)^2
=(1/2)e^x/(x-1)
e^x/(1-x)=F(x)^2
F(x)=e^(x/2)/√(x-1)
f(x)=F'(x)=(1/2)e^(x/2)/√(x-1) - (1/2)e^(x/2)/√(x-1)^3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询