设函数f(x=ax+b) 其中a+b为实数,f1(x)=f(x),f(n+1)(x)=f(fn(x)),n=1,2,3...若f5(x)=32x+93 则ab=?

多少得失看落花8
2011-08-04 · TA获得超过1531个赞
知道小有建树答主
回答量:122
采纳率:0%
帮助的人:149万
展开全部
解:由f1(x)=f(x)=ax+b,得到f2(x)=f(f1(x))=a(ax+b)+b=a2x+ab+b,
f3(x)=f(f2(x))=a[a(ax+b)+b]+b=a3x+a2b+ab+b,
同理f4(x)=f(f3(x))=a4x+a3b+a2b+ab+b,
则f5(x)=f(f4(x))=a5x+a4b+a3b+a2b+ab+b=32x+93,
即a5=32①,a4b+a3b+a2b+ab+b=93②,
由①解得:a=2,把a=2代入②解得:b=3,
则ab=6.
故答案为:6
ssfrssfr
2011-08-04 · 超过19用户采纳过TA的回答
知道答主
回答量:69
采纳率:0%
帮助的人:51万
展开全部
题的括号有问题,在整理一下
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式