已知在锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且tanC=ab/a^2+b^2-c^2。当c=ab/a^2+b^2-c^2

求c=1时,求a^2+b^2的取值范围设a=r*cosx,b=r*sinx这个怎么可以设?... 求c=1时,求a^2+b^2的取值范围
设 a = r * cosx , b = r * sinx 这个怎么可以设?
展开
帐号已注销
2011-08-04 · TA获得超过1279个赞
知道小有建树答主
回答量:339
采纳率:0%
帮助的人:326万
展开全部
设 a = r * cosx , b = r * sinx
由 a^2 + b^2 -1 = √3 ab
得 r^2 - 1 = √3 / 2 * r^2 * sin(2x)
>> r^2 = 2 / (2 - √3 sin (2x)) 又 sin(2x) ∈ [ -1 , 1 ]
故 r^2 ∈ [ 4 - 2√3 , 4 + 2√3 ]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式