试求出所有这样的正整数a,使得二次方程ax2+2(2a—1)x+4(a—3)=0至少有一个整数根.

请写明一下过程,谢谢!... 请写明一下过程,谢谢! 展开
370116
高赞答主

2007-07-07 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.6亿
展开全部
所有正整数a的值是:1、3、6、10;

解:因为a是正整数,所以原方程是关于x的一元二次方程。要使方程有实根,首先它的判别式必须为非负数,即△≥0,
而△=[2(2a-1)]^2-4a*4(a-3)
=4(4a^2-4a+1)-16a^2+48a
=32a+4
显然,判别式是大于0。
原方程整理成:
a(x^2+4x+4)=12+2x,当x=-2时,等式两边不相等,故x≠-2,即x^2+4x+4≠0,于是有
a=(12+2x)/(x^2+4x+4)--------------------------------①
因为x^2+4x+4=(x+2)^2>0,a为正整数,所以12+2x>0,且
12+2x≥x^2+4x+4
解得:-4≤x≤2;其中x≠-2。
x的可能值是:-4,-3,-1,0,1,2;
代入①式,相应得:1,6,10,3,14/9,1;
a取1,3,6,10,其余舍去。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式