在三角形ABC中,角A=60度,BC=3,则三角形ABC的周长为?
4个回答
展开全部
由正弦定理,有
BC/sinA=AC/sinB=AB/sinC
得AC=BCsinB/sinA=3sinB/sin60°=3sinB/(√3/2)=2√3sinB
AB=BCsinC/sinA=BCsin[180°-(A+B)]/sinA=3sin(60°+B)/sin60°
=(3sin60°cosB+3sinBcos60°)/sin60°
=3cosB+3sinBcot60°
=3cosB+√3sinB
AB+BC+AC=3cosB+√3sinB+3+2√3sinB=3√3sinB+3cosB+3
ΔABC的周长是3√3sinB+3cosB+3
BC/sinA=AC/sinB=AB/sinC
得AC=BCsinB/sinA=3sinB/sin60°=3sinB/(√3/2)=2√3sinB
AB=BCsinC/sinA=BCsin[180°-(A+B)]/sinA=3sin(60°+B)/sin60°
=(3sin60°cosB+3sinBcos60°)/sin60°
=3cosB+3sinBcot60°
=3cosB+√3sinB
AB+BC+AC=3cosB+√3sinB+3+2√3sinB=3√3sinB+3cosB+3
ΔABC的周长是3√3sinB+3cosB+3
展开全部
条件不充分。要么已知两角一边,要么已知两边一角,要么是等腰三角形,否则无法做~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询