
急急急,裂项法计算
1.1/1x2x3+1/2x3x4+…+1/n(n+1)(n+2)2.2/(X+2)(X+4)+2/(X+4)(X+6)+…+2/(X+2008)(X+2010)...
1.1/1x2x3+1/2x3x4+…+1/n(n+1)(n+2)
2.2/(X+2)(X+4)+2/(X+4)(X+6)+…+2/(X+2008)(X+2010) 展开
2.2/(X+2)(X+4)+2/(X+4)(X+6)+…+2/(X+2008)(X+2010) 展开
2个回答
展开全部
1.解.裂项法.
1/[n(n+1)(n+2)]=(1/2){1/[n)n+1)]-1/[(n+1)(n+2)]}
=(1/2)[1/n-1/(n+1)-1/(n+1)+1/(n+2)]
=(1/2)[1/n-2/(n+1)+1/(n+2)]
2.解:
原式
=1/2×[1/x-1/(x+2)]+1/2×[1/(x+2)-1/(x+4)]+......+1/2×[1/(x+2006)-1/(x+2008)]
=1/2×[1/x-1/(x+2)+1/(x+2)-1/(x+4)+......+1/(x+2006)-1/(x+2008)]
=1/2×[1/x-1/(x+2008)]
=1/2×[(x+2008)-x]/[x(x+2008)]
=1/2×2008/[x(x+2008)]
=1004/[x(x+2008)]
=1004/(x^2+2008x)
ps:这种方法在数学中叫做‘裂项相消法’。
1/[n(n+1)(n+2)]=(1/2){1/[n)n+1)]-1/[(n+1)(n+2)]}
=(1/2)[1/n-1/(n+1)-1/(n+1)+1/(n+2)]
=(1/2)[1/n-2/(n+1)+1/(n+2)]
2.解:
原式
=1/2×[1/x-1/(x+2)]+1/2×[1/(x+2)-1/(x+4)]+......+1/2×[1/(x+2006)-1/(x+2008)]
=1/2×[1/x-1/(x+2)+1/(x+2)-1/(x+4)+......+1/(x+2006)-1/(x+2008)]
=1/2×[1/x-1/(x+2008)]
=1/2×[(x+2008)-x]/[x(x+2008)]
=1/2×2008/[x(x+2008)]
=1004/[x(x+2008)]
=1004/(x^2+2008x)
ps:这种方法在数学中叫做‘裂项相消法’。
追问
呃.. 请问下第一题的1/2怎样来的
追答
比如啊
1/1x2x3+1/2x3x4+.....+1/N(N+1)(N+2)=(1/2)*(1/2-1/2*3+1/2*3-1/3*4+...) = (1/2)*(1/2-1/(N+1)(N+2)) < 1/4

2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
由于题目比较复杂,介绍方法如下:
1、分析第n个加数:An=1/[n(n+1)(n+2)]=(1/2){1/[n(n+1)]-1/[(n+1)(n+2)]},则:
和=(1/2){1/[1×2]-1/[(n+1)(n+2)]}=……
2、原式=[1/(x+2)-1/(x+4)]+[1/(x+4)-1/(x+6)]+[1/(x+6)-1/(x+8)]+…+[1/(x+2008)-1/(x+2010)]=1/(x+2)-1/(x+2010)=…
1、分析第n个加数:An=1/[n(n+1)(n+2)]=(1/2){1/[n(n+1)]-1/[(n+1)(n+2)]},则:
和=(1/2){1/[1×2]-1/[(n+1)(n+2)]}=……
2、原式=[1/(x+2)-1/(x+4)]+[1/(x+4)-1/(x+6)]+[1/(x+6)-1/(x+8)]+…+[1/(x+2008)-1/(x+2010)]=1/(x+2)-1/(x+2010)=…
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询