已知P为圆O外一点,OP与圆O交于点A,割线PBC与圆O交于点B,C,且PB=PC,如果OA=7,PA=2,求PC的长。

陈华1222
2011-08-05 · TA获得超过5.1万个赞
知道大有可为答主
回答量:8380
采纳率:71%
帮助的人:3856万
展开全部
“PB=PC”改为“PB=BC”。
延长PA交圆O于点D,连接AB,CD。
因为∠PBA+∠ABC=180度,∠ABC+∠D=180度(圆内接四边形的对角互补)
所以,∠PBA=∠D,又因为∠P为公共角,
所以,三角形PAB相似三角形PCD,
所以,PA/PC=PB/PD,即有,PA*PD=PB*PC。
因为OA=7,PA=2,所以,PD=OA+OD+PA=16,
所以,PB*PC=32。因为PB=BC,所以,PB=PC/2,
PC/2*PC=32,PC=8(-8舍去)。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式