在三角形ABC中,BO平分角ABC,CO平分角ACB,MN平行BC且点O在MN上,设AB=12,BC=24,AC=18求三角形AMN的周长
2个回答
展开全部
因为BO平分角ABC,CO平分角ACB,所以∠OBC=∠OBM,又MN∥BC,所以∠OBC=∠BOM,
∠OBM=∠BOM,所以三角形BMO为等腰三角形,BM=OM
同理可证,ON=NC,MN=ON+OM=NC+BM
设BM=2x 则NC=3x
因三角形ABC∽三角形AMN
AB/AC=AM/MN=(12-2x)/5x=12/24
x=8/3,AM=12-16/3=20/3
三角形AMN的周长/三角形ABC的周长=AM/AB=(20/3)/12=5/9,
三角形AMN的周长=54*5/9=30
∠OBM=∠BOM,所以三角形BMO为等腰三角形,BM=OM
同理可证,ON=NC,MN=ON+OM=NC+BM
设BM=2x 则NC=3x
因三角形ABC∽三角形AMN
AB/AC=AM/MN=(12-2x)/5x=12/24
x=8/3,AM=12-16/3=20/3
三角形AMN的周长/三角形ABC的周长=AM/AB=(20/3)/12=5/9,
三角形AMN的周长=54*5/9=30
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询