如图,在四边形ABCD中,∠DAB=∠DCB=90°,M为BD的中点,MN垂直AC交CM的平行线AN于N
(1)求证:四边形ANCM为菱形(2)若∠ADB=30°,∠DBC=45°,求菱形ANCM的相邻两角的度数...
(1)求证:四边形ANCM为菱形
(2)若∠ ADB=30°, ∠DBC=45°,求菱形ANCM的相邻两角的度数 展开
(2)若∠ ADB=30°, ∠DBC=45°,求菱形ANCM的相邻两角的度数 展开
1个回答
展开全部
1.AM、CM分别为直角三角形ABD和BCD的斜边上的中线,所以:AM=CM,而MN⊥AC,则可知:MN为AC的中垂线,则AN=CN
由AN//CM得出:∠NAC=∠ACM=∠MAC,即AC平分∠MAN,可知:AC是MN的中垂线
即AC与MN互相垂直平分,所以:四边形ANCM是菱形
2.∠ADB=30°,∠DAB=∠DCB=90°
可知AB=BD/2=BM=DM=AM,则三角形ABM为等边三角形∠AMB=60°
而∠DBC=∠CBD=45°,则∠BMC=90°
则∠AMC=∠AMB+∠BMC=60°+90°=150°
可知∠MAN=30°
由AN//CM得出:∠NAC=∠ACM=∠MAC,即AC平分∠MAN,可知:AC是MN的中垂线
即AC与MN互相垂直平分,所以:四边形ANCM是菱形
2.∠ADB=30°,∠DAB=∠DCB=90°
可知AB=BD/2=BM=DM=AM,则三角形ABM为等边三角形∠AMB=60°
而∠DBC=∠CBD=45°,则∠BMC=90°
则∠AMC=∠AMB+∠BMC=60°+90°=150°
可知∠MAN=30°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询