如 图,已 知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=72°,∠ABC=50°,并且∠BAD+∠CAD=180°,那么∠BDC=
2个回答
展开全部
设AC,BD交于点O
∠BAC = 180° - ∠ACB - ∠ABC = 58°
∠BAD + ∠CAD = ∠BAC + 2∠CAD = 180°
∴∠CAD = 61°
由此易求得∠ADB = 36°
作∠BCA的平分线交BO于E,连AE
∴BC/BE = CO/OE (1)
则∠OCE = 36°= ∠ODA
∴A,D,E,C四点共圆
∵OB平分∠ABC
∴BA/BC = AO/OC (2)
(1)×(2) 得 BA/BE = AO/OE
∴EA评分∠BAO
A,D,E,C共圆
∴∠BDC = ∠CAE = ∠BAC / 2 = 29°
∠BAC = 180° - ∠ACB - ∠ABC = 58°
∠BAD + ∠CAD = ∠BAC + 2∠CAD = 180°
∴∠CAD = 61°
由此易求得∠ADB = 36°
作∠BCA的平分线交BO于E,连AE
∴BC/BE = CO/OE (1)
则∠OCE = 36°= ∠ODA
∴A,D,E,C四点共圆
∵OB平分∠ABC
∴BA/BC = AO/OC (2)
(1)×(2) 得 BA/BE = AO/OE
∴EA评分∠BAO
A,D,E,C共圆
∴∠BDC = ∠CAE = ∠BAC / 2 = 29°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询