一元二次方程两根关系

举报
ZCX0874
2011-08-06 · TA获得超过3万个赞
知道大有可为答主
回答量:6764
采纳率:75%
帮助的人:2874万
展开全部
设一元二次方程ax2+bx+c=0的二根分别为x1和x2,
当判别式△≥0时,x1+x2=-b/2a. [a≠0]
△<0,无实数根,谈不上二个根的关系。
昕缘蕾流
2012-03-17
知道答主
回答量:6
采纳率:0%
帮助的人:3.7万
展开全部
X1+X2=-a/b X1X2=c/a
3 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
zhzhouy
2012-01-02 · TA获得超过3363个赞
知道小有建树答主
回答量:874
采纳率:0%
帮助的人:1109万
展开全部
在有实数根的一元二次方程ax^2+bx+c=0中,即b^2-4ac>=0时,我们知道根与系数的关系(即韦达定理)是:x1+x2=-b/a,x1x2=c/a【注:换成mx^2+nx+p=0亦然,相应代替即可,即x1+x2=-n/m,x1x2=p/m】。而根的解就是我们常知的万能公式:x1,2=(-b±√(b^2-4ac))/2a。
由此可见,所说的k代指的是:根号项的系数,即1/2a,题目中的是1/2m。而a所指的是-n/2m.所以其根的形式便是:a±k√b,注意只是表达的根的形式,而并非解,解在后面已经给出。之所说强调n^2-4mp为无理数,就是想说方程的根的根号项是开不出来的,必然有一个无理数项,仅此而已。
【注:另外,扩展一下吧,当b^2-4ac<0,即方程的根为虚根(非实数根)时,它的性质是怎样的呢?实际上,这种情况下,上述的结论依然是成立的,不论实根虚根,根与系数关系即韦达定理,和万能公式依然成立。所不同的是,因为b^2-4ac<0,而i^2=-1,在化简为最终结果时,会变成:x1,2=(-b±√(b^2-4ac))i/2a的形式。这一段不明白的话可以不用管,以后会学到,希望上面的叙述你明白了。】
抢首赞 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
小淳酱uu
2011-08-07
知道答主
回答量:6
采纳率:0%
帮助的人:1万
展开全部
输入不了公式
抢首赞 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
zl1096622421zl
2011-08-06 · TA获得超过299个赞
知道答主
回答量:156
采纳率:0%
帮助的人:72.3万
展开全部
等于0
抢首赞 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
收起 3条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式