设数列{an}的前n项和为sn,已知sn=2an-2^(n+1), 求证数列{an/2^n}为等差数列,并求{an}的通项公式
1个回答
展开全部
s(n) = 2a(n) - 2^(n+1),
a(1) = s(1) = 2a(1) - 2^2, a(1) = 4.
s(n+1) = 2a(n+1) - 2^(n+2),
a(n+1) = s(n+1)-s(n) = 2a(n+1) - 2^(n+2) - 2a(n) + 2^(n+1)
a(n+1) = 2a(n) + 2^(n+1),
a(n+1)/2^(n+1) = a(n)/2^n + 1,
{a(n)/2^n}是首项为a(1)/2 = 2,公差为4的等差数列。
a(n)/2^n = 2 + (n-1) = n+1,
a(n) = (n+1)2^n.
a(1) = s(1) = 2a(1) - 2^2, a(1) = 4.
s(n+1) = 2a(n+1) - 2^(n+2),
a(n+1) = s(n+1)-s(n) = 2a(n+1) - 2^(n+2) - 2a(n) + 2^(n+1)
a(n+1) = 2a(n) + 2^(n+1),
a(n+1)/2^(n+1) = a(n)/2^n + 1,
{a(n)/2^n}是首项为a(1)/2 = 2,公差为4的等差数列。
a(n)/2^n = 2 + (n-1) = n+1,
a(n) = (n+1)2^n.
追问
为什么最后是a(n+1) = 2a(n) + 2^(n+1)?
追答
a(n+1) = s(n+1)-s(n) = 2a(n+1) - 2^(n+2) - 2a(n) + 2^(n+1),
a(n+1) = 2a(n) + 2^(n+2) - 2^(n+1) = 2a(n) + 2*2^(n+1) - 2^(n+1) = 2a(n) + 2^(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询