大学数学《线性代数与解析几何》
2013-12-05
展开全部
证明|A|^(-1)=|A^(-1)|,有3个已知:①A^(-1)=[1/|A|]A*
(其中A*是A的伴随矩阵)②AA*=A*A=|A|E③对任意2个矩阵B,C,有|BC|=|B||C| 证明|A|^(-1)=|A^(-1)|:对②取行列式,并用③,得|A||A*|=||A|E|=|A|^n,从而,|A*|=|A|^(n-1),再对①取行列式,得右边|A^(-1)|=|[1/|A|]A*|=[1/|A|^n]|A*|=1/|A|=左边。
(其中A*是A的伴随矩阵)②AA*=A*A=|A|E③对任意2个矩阵B,C,有|BC|=|B||C| 证明|A|^(-1)=|A^(-1)|:对②取行列式,并用③,得|A||A*|=||A|E|=|A|^n,从而,|A*|=|A|^(n-1),再对①取行列式,得右边|A^(-1)|=|[1/|A|]A*|=[1/|A|^n]|A*|=1/|A|=左边。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-12-05
展开全部
其实你可以用梅捏劳斯定理和赛瓦定理的= =
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询