设x>y>z>0,若1/x-y+1/y-z+n/z-x>=0恒成立,则n的最大值是?

求丰Ro
2011-08-07 · TA获得超过1432个赞
知道小有建树答主
回答量:268
采纳率:100%
帮助的人:185万
展开全部
1/(x-y)+1/(y-z)+n/(z-x)>=0 等价于 1/(x-y)+1/(y-z)>=n/(x-z)
等价于 (x-z)*[1/(x-y)+1/(y-z)]>=n
设 a=x-y b=y-z a,b>0 则有(a+b)*(1/a+1/b)>=n 恒成立
左边=(a+b)*(1/a+1/b)=2+a/b+b/a>=4 等号成立当且仅当a=b>0 从而由恒成立必有n<=4
从而n的最大值为4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式