z=sin(xy)+cos²(xy)的偏导数,详细过程,谢谢…
2个回答
展开全部
解:
∂z/∂x
= [cos(xy)]·(xy)' + [2cos(xy)]·[2cos(xy)]‘
=ycos(xy)-4[cos(xy)]·[sin(xy)]·(xy)'
=ycos(xy)-4ysin(xy)cos(xy)
=ycos(xy) · [1-4sin(xy)]
∂z/∂y
= [cos(xy)]·(xy)' + [2cos(xy)]·[2cos(xy)]‘
=xcos(xy)-4[cos(xy)]·[sin(xy)]·(xy)'
=xcos(xy)-4xsin(xy)cos(xy)
=xcos(xy) · [1-4sin(xy)]
∂z/∂x
= [cos(xy)]·(xy)' + [2cos(xy)]·[2cos(xy)]‘
=ycos(xy)-4[cos(xy)]·[sin(xy)]·(xy)'
=ycos(xy)-4ysin(xy)cos(xy)
=ycos(xy) · [1-4sin(xy)]
∂z/∂y
= [cos(xy)]·(xy)' + [2cos(xy)]·[2cos(xy)]‘
=xcos(xy)-4[cos(xy)]·[sin(xy)]·(xy)'
=xcos(xy)-4xsin(xy)cos(xy)
=xcos(xy) · [1-4sin(xy)]
展开全部
解:
∂z/∂x
= [cos(xy)]·(xy)' + [2cos(xy)]·[cos(xy)]‘
=ycos(xy)-2[cos(xy)]·[sin(xy)]·(xy)'
=ycos(xy)-2ysin(xy)cos(xy)
=ycos(xy) · [1-2sin(xy)]
∂z/∂y
= [cos(xy)]·(xy)' + [2cos(xy)]·[cos(xy)]‘
=xcos(xy)-2[cos(xy)]·[sin(xy)]·(xy)'
=xcos(xy)-2xsin(xy)cos(xy)
=xcos(xy) · [1-2sin(xy)]
∂z/∂x
= [cos(xy)]·(xy)' + [2cos(xy)]·[cos(xy)]‘
=ycos(xy)-2[cos(xy)]·[sin(xy)]·(xy)'
=ycos(xy)-2ysin(xy)cos(xy)
=ycos(xy) · [1-2sin(xy)]
∂z/∂y
= [cos(xy)]·(xy)' + [2cos(xy)]·[cos(xy)]‘
=xcos(xy)-2[cos(xy)]·[sin(xy)]·(xy)'
=xcos(xy)-2xsin(xy)cos(xy)
=xcos(xy) · [1-2sin(xy)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询