如图 AB是圆O的直径 C是圆O上一点 OD⊥BC于点D 过点C作圆O的切线
如图,AB是圆O的直径,C是圆O上一点,OD⊥BC于点D,过点C作圆O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与圆O相切(2)若BE=3√5,且sin∠A...
如图,AB是圆O的直径,C是圆O上一点,OD⊥BC于点D,过点C作圆O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与圆O相切 (2)若BE=3√5,且sin∠ABC=2/3,求OA得长度。
求大神解:急急急急急急急急急!!! 展开
求大神解:急急急急急急急急急!!! 展开
1个回答
展开全部
你好:
证明:
【1】
连接OC,
∵OD⊥BC,
∴OC=OB,CD=BD(垂径定理),
∴∠OCD=∠OBD,
∵∠OCD+∠COE=∠OBD+∠BOE=90°,
∴∠COE=∠BOE,
在△OCE和△OBE中,
∵OC=OB∠COE=∠BOEOE=OE,
∴△OCE≌△OBE,
∴∠OBE=∠OCE=90°,即OB⊥BE,
故可证得BE与⊙O相切.
【2】
过点D作DH⊥AB,连接AD并延长交BE于∵∠DOH=∠BOD,∠DHO=∠BDO=90°,
∴△ODH∽△OBD,
∴ODOB=OHOD=DHBD
又∵sin∠ABC=23,OB=9,
∴OD=6,
∴OH=4,
∴DH=OD2-OH2=25,
又∵△ADH∽△AFB,
∴AHAB=DHFB,1318=2√5FB,
∴FB=36√513
很高兴为您解答,祝你学习进步!【华工王师】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮。
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢!
证明:
【1】
连接OC,
∵OD⊥BC,
∴OC=OB,CD=BD(垂径定理),
∴∠OCD=∠OBD,
∵∠OCD+∠COE=∠OBD+∠BOE=90°,
∴∠COE=∠BOE,
在△OCE和△OBE中,
∵OC=OB∠COE=∠BOEOE=OE,
∴△OCE≌△OBE,
∴∠OBE=∠OCE=90°,即OB⊥BE,
故可证得BE与⊙O相切.
【2】
过点D作DH⊥AB,连接AD并延长交BE于∵∠DOH=∠BOD,∠DHO=∠BDO=90°,
∴△ODH∽△OBD,
∴ODOB=OHOD=DHBD
又∵sin∠ABC=23,OB=9,
∴OD=6,
∴OH=4,
∴DH=OD2-OH2=25,
又∵△ADH∽△AFB,
∴AHAB=DHFB,1318=2√5FB,
∴FB=36√513
很高兴为您解答,祝你学习进步!【华工王师】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮。
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询