1个回答
展开全部
解:
1. △ABC的面积=(1/2)*a*b*sinC=3^(1/2)
即ab=2*3^(1/2)/sinC
=2*3^(1/2)/sin60°
=4
2.若sinB=2sinA
则有:2sinA-sinB=2sin(120°-B)-sinB
=2sin120°*cosB-2sinB*cos120°-sinB
=2sin120°*cosB+sinB-sinB
=2sin120°*cosB
=0
所以 cosB=0
即有: B=π/2, A=π/6---------------------------①
根据正弦定理:
a/sinA=b/sinB=c/sinC=2/sin(π/3)----------②
由①②可以得到:a=2*3^(-1/2)
所以△ABC的面积=1/2*a*c=a=2*3^(-1/2)----------------B=π/2为直角
1. △ABC的面积=(1/2)*a*b*sinC=3^(1/2)
即ab=2*3^(1/2)/sinC
=2*3^(1/2)/sin60°
=4
2.若sinB=2sinA
则有:2sinA-sinB=2sin(120°-B)-sinB
=2sin120°*cosB-2sinB*cos120°-sinB
=2sin120°*cosB+sinB-sinB
=2sin120°*cosB
=0
所以 cosB=0
即有: B=π/2, A=π/6---------------------------①
根据正弦定理:
a/sinA=b/sinB=c/sinC=2/sin(π/3)----------②
由①②可以得到:a=2*3^(-1/2)
所以△ABC的面积=1/2*a*c=a=2*3^(-1/2)----------------B=π/2为直角
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询