一道利用泰勒公式的证明题

设函数f(x)在点附近有n+1阶连续导数,且f'(x0)=f''(x0)=...=fn(x0)=0,f(n+1)(x0)≠0证明:若n为奇数,则点x0是f(x)的极值点;... 设函数f(x)在点附近有n+1阶连续导数,且f'(x0)=f''(x0)=...=fn(x0)=0,f(n+1)(x0)≠0 证明:若n为奇数,则点x0是f(x)的极值点;若n为偶数,则点x0不是f(x)的极值点 展开
san角函数
2013-11-06 · TA获得超过3577个赞
知道小有建树答主
回答量:2155
采纳率:50%
帮助的人:754万
展开全部
对于f(x)在x0点的泰勒公式,由于f'(x0)=f''(x0)=...=fn(x0)=0,所以泰勒公式中从第二项到第n项都为0,所以只剩下第一项和第n+1项,即f(x)=f(x0)+[f(n+1)(x0)/(n+1)!](x-x0)^(n+1),所以此式左右两边求导得f'(x)=[f(n+1)(x0)/n!](x-x0)^n。(1)若n为奇数,则在x0的左右两侧,(x-x0)^n符号相反,即f'(x)在x0左右两侧符号相反,即f(x)在x0左右两侧单调性相反,所以x0是f(x0)的极值点;(2)若n为偶数,同理可知,f'(x)在x0两侧符号相同,即此时f(x)在x0点不改变单调性,所以此时x0不是极值点。证毕
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式