关于小学数学应用题全部的计算公式 及方法

 我来答
wx790613
2011-08-11 · TA获得超过491个赞
知道答主
回答量:58
采纳率:100%
帮助的人:43.1万
展开全部
数量关系计算公式方面
1、每份数×份数=总数 /总数÷每份数=份数/ 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、 加数+加数=和 和-另一个加数=一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷另一个因数=一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长
周长=边长×4 C=4a
边长=周长÷4 a=C÷4
面积=边长×边长 S=a×a=a2
2 、正方体 V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a=a3
3 、长方形
C周长 S面积 a长 b宽
周长=(长+宽)×2 C=(a+b)×2
长=周长÷2-宽
宽=周长÷2-长
面积=长×宽
S=a×b
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积=长×宽×2+长×高×2+宽×高×2
S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
长=体积÷(宽×高)
宽=体积÷(长×高)
高=体积÷(长×宽)
5 三角形
s面积 a底 h高
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高 s=ah
底=面积÷高 高=面积÷底
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
高=面积×2÷(上底+下底)
上底=面积×2÷高-下底
下底=面积×2÷高-上底
8 圆形
S面积 C周长 ∏ d=直径 r=半径
直径=半径×2 d=2r 半径=直径÷2 r= d÷2
(1)周长=直径×π=2×π×半径
C= π d =2πr
直径=周长÷π d= C ÷ π
半径=周长÷(2π) r=C÷(2π)
(2)面积=π×半径×半径 s=πr2
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
①侧面积=π d×高(据直径求侧面积)
②侧面积=2πr×高(据半径求侧面积)
(2)表面积=侧面积+底面积×2
①π d×高+π( )2×2(据直径求表面积)
②2πr×高+π r2 ×2(据半径求表面积)
(3)体积=底面积×高 V=Sh
底面积=体积÷高 S=V÷H
高=体积÷底面积 H=V÷S
长方体(正方体、圆柱体)的体积=底面积×高 V=Sh
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3 V= S H
底面积=体积×3÷高
高=体积×3÷底面积
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
原售价=实际售价÷折扣
实际售价=原售价×折扣
应纳税额=总收入×税率
税率=应纳税额÷总收入
总收入=应纳税额÷税率
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度单位换算
1公里=1千米
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米 1亩=666.666平方米
体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克 1千克=1000克
1千克=1公斤(1公斤 = 2市斤)
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分 1分=60秒 1时=3600秒
小学数学定义定理公式(二)
一、算术方面
1.加法交换律:a+b=b+a
两数相加交换加数的位置,和不变。
2.加法结合律:(a+b)+c=a+(b+c)
三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:a×b=b×a
两数相乘,交换因数的位置,积不变。
4.乘法结合律:(a×b)×c=a×(b×c)
三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:(a±b)×c=a×c±b×c
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:
(4+2)×5=4×5+2×5,(4-2)×5=4×5-2×5
6、特殊情况:a ÷ b ÷ c = a ÷(b × c) 、 a-b-c= a-(b+c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数+余数
方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。 如:3x =9

分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。(或称这两个数互为倒数)1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以一个相同的数(0除外),分数的大小不变。
比 和比例
什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 。
比的基本性质:比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
=比例尺 图上距离=实际距离×比例尺
实际距离=图上距离÷比例尺
百分数
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的化发。
倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数是有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数是无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。 (约分用最大公约数)
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1既不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:个位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:个位是0,5。
倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。

植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距+1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数   (和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数   小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数   小数×倍数=大数

(或 小数+差=大数)

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量
少男少女2
高粉答主

2011-08-08 · 醉心答题,欢迎关注
知道大有可为答主
回答量:1.7万
采纳率:96%
帮助的人:4853万
展开全部
1 归一问题
【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】 总量÷份数=1份数量 1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)
(2)买16支铅笔需要多少钱?0.12×16=1.92(元)
列成综合算式 0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?
解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)
(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)
列成综合算式 90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
解 (1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)
(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)
列成综合算式 105÷(100÷5÷4×7)=3(次)
答:需要运3次。
2 归总问题
【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】 1份数量×份数=总量 总量÷1份数量=份数
总量÷另一份数=另一每份数量

【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?
解 (1)这批布总共有多少米? 3.2×791=2531.2(米)
(2)现在可以做多少套? 2531.2÷2.8=904(套)
列成综合算式 3.2×791÷2.8=904(套)
答:现在可以做904套。
例2 小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?
解 (1)《红岩》这本书总共多少页? 24×12=288(页)
(2)小明几天可以读完《红岩》? 288÷36=8(天)
列成综合算式 24×12÷36=8(天)
答:小明8天可以读完《红岩》。
例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?
解 (1)这批蔬菜共有多少千克? 50×30=1500(千克)
(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成综合算式 50×30÷(50+10)=1500÷60=25(天)
答:这批蔬菜可以吃25天。
3 和差问题
【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】 大数=(和+差)÷ 2 小数=(和-差)÷ 2

【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?
解 甲班人数=(98+6)÷2=52(人)
乙班人数=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解 长=(18+2)÷2=10(厘米) 宽=(18-2)÷2=8(厘米)
长方形的面积 =10×8=80(平方厘米)
答:长方形的面积为80平方厘米。
例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?
解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此 甲车筐数=(97+14×2+3)÷2=64(筐)
乙车筐数=97-64=33(筐)
答:甲车原来装苹果64筐,乙车原来装苹果33筐。
4 和倍问题
【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】 总和 ÷(几倍+1)=较小的数 总和 - 较小的数 = 较大的数
较小的数 ×几倍 = 较大的数

【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
解 (1)杏树有多少棵? 248÷(3+1)=62(棵)
(2)桃树有多少棵? 62×3=186(棵)
答:杏树有62棵,桃树有186棵。
例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?
解 (1)西库存粮数=480÷(1.4+1)=200(吨)
(2)东库存粮数=480-200=280(吨)
答:东库存粮280吨,西库存粮200吨。
例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?
解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为 (52+32)÷(2+1)=28(辆)
所求天数为 (52-28)÷(28-24)=6(天)
答:6天以后乙站车辆数是甲站的2倍。
例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?
解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;
又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;
这时(170+4-6)就相当于(1+2+3)倍。那么,
甲数=(170+4-6)÷(1+2+3)=28
乙数=28×2-4=52
丙数=28×3+6=90
答:甲数是28,乙数是52,丙数是90。
5 差倍问题
【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

【数量关系】 两个数的差÷(几倍-1)=较小的数
较小的数×几倍=较大的数

【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
手机用户7e446
2011-08-21 · TA获得超过5.6万个赞
知道大有可为答主
回答量:2.5万
采纳率:0%
帮助的人:3309万
展开全部
1 归一问题
【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】 总量÷份数=1份数量 1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)
(2)买16支铅笔需要多少钱?0.12×16=1.92(元)
列成综合算式 0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?
解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)
(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)
列成综合算式 90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
解 (1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)
(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)
列成综合算式 105÷(100÷5÷4×7)=3(次)
答:需要运3次。
2 归总问题
【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】 1份数量×份数=总量 总量÷1份数量=份数
总量÷另一份数=另一每份数量

【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?
解 (1)这批布总共有多少米? 3.2×791=2531.2(米)
(2)现在可以做多少套? 2531.2÷2.8=904(套)
列成综合算式 3.2×791÷2.8=904(套)
答:现在可以做904套。
例2 小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?
解 (1)《红岩》这本书总共多少页? 24×12=288(页)
(2)小明几天可以读完《红岩》? 288÷36=8(天)
列成综合算式 24×12÷36=8(天)
答:小明8天可以读完《红岩》。
例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?
解 (1)这批蔬菜共有多少千克? 50×30=1500(千克)
(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成综合算式 50×30÷(50+10)=1500÷60=25(天)
答:这批蔬菜可以吃25天。
3 和差问题
【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】 大数=(和+差)÷ 2 小数=(和-差)÷ 2

【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?
解 甲班人数=(98+6)÷2=52(人)
乙班人数=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解 长=(18+2)÷2=10(厘米) 宽=(18-2)÷2=8(厘米)
长方形的面积 =10×8=80(平方厘米)
答:长方形的面积为80平方厘米。
例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?
解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此 甲车筐数=(97+14×2+3)÷2=64(筐)
乙车筐数=97-64=33(筐)
答:甲车原来装苹果64筐,乙车原来装苹果33筐。
4 和倍问题
【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】 总和 ÷(几倍+1)=较小的数 总和 - 较小的数 = 较大的数
较小的数 ×几倍 = 较大的数

【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
解 (1)杏树有多少棵? 248÷(3+1)=62(棵)
(2)桃树有多少棵? 62×3=186(棵)
答:杏树有62棵,桃树有186棵。
例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?
解 (1)西库存粮数=480÷(1.4+1)=200(吨)
(2)东库存粮数=480-200=280(吨)
答:东库存粮280吨,西库存粮200吨。
例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?
解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为 (52+32)÷(2+1)=28(辆)
所求天数为 (52-28)÷(28-24)=6(天)
答:6天以后乙站车辆数是甲站的2倍。
例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?
解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;
又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;
这时(170+4-6)就相当于(1+2+3)倍。那么,
甲数=(170+4-6)÷(1+2+3)=28
乙数=28×2-4=52
丙数=28×3+6=90
答:甲数是28,乙数是52,丙数是90。
5 差倍问题
【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

【数量关系】 两个数的差÷(几倍-1)=较小的数
较小的数×几倍=较大的数

【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
mnmnck
2011-08-10 · TA获得超过151个赞
知道答主
回答量:155
采纳率:0%
帮助的人:125万
展开全部
首先是一些面积的基本计算公式,如:圆的计算公式(面积、周长)长方形的计算公式(面积、周长)正方形、长方体、正方体、圆柱体等其他图形的计算公式。
其次,就是列方程,每次遇到不会的应用题都推荐用方程的形式来解决,这是最为简单的回答方法。其中,列方程的方法也分为好几种:1、顺着题目的意思走 2、根据题目的意思来列出等量关系(建议设单倍数为X,比较方便) 3、根据图形的计算公式来列方程 4、在一句话中,把“比”字看作一个“=”,把“是”字也看作一个“=”。 5、(关于行程问题中的相遇问题)总量=慢者先行路程+快者路程+慢者路程 6、(关于工作问题)工作效率*工作时间=工作总量 7、(关于行程问题中的相遇问题)一半路程=另一半路程 8、寻找一个不变量:总量=总量 9、(关于变化问题)三步曲:1、看始时两个物体的量 2、变化的过程 3、结果
接下来,就是一些简单的分数应用题了,建议牢记分数的四则运算,和结尾能化简就化简的原则,下面是一些简短的例子,便于理解:
加法:2/3+6/3
=6/9+6/3
=6/12
=1/2
减法:6/6-6/3
=6/(6-3)
=6/3
=2/1
乘法:6/5*6/6
=6*6/6*5
=36/30
=6/5
除法:(等于乘另一个数的倒数)6/6/5/6
=6*6/6*5
=36/30
=6/5
帮我加点¥吧,这年头出来混不容易呀!囧囧囧谢谢!!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhangflftxgt
2011-08-07 · TA获得超过355个赞
知道答主
回答量:213
采纳率:0%
帮助的人:77.1万
展开全部
你还是问得具体点哟
追问
北师大版小学应用题1-6年级的计算公式及解题方法 例如:百分数应用题 、行程问题等
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式