数据库有哪几种?
数据库有两种类型,分别是关系型数据库与非关系型数据库。
1、关系数据库
包括:MySQL、MariaDB(MySQL的代替品,英文维基百科从MySQL转向MariaDB)、Percona Server(MySQL的代替品)、PostgreSQL、Microsoft Access、Microsoft SQL Server、Google Fusion Tables。
FileMaker、Oracle数据库、Sybase、dBASE、Clipper、FoxPro、foshub。几乎所有的数据库管理系统都配备了一个开放式数据库连接(ODBC)驱动程序,令各个数据库之间得以互相集成。
2、非关系型数据库(NoSQL)
包括:BigTable(Google)、Cassandra、MongoDB、CouchDB、键值(key-value)数据库、Apache Cassandra(为Facebook所使用):高度可扩展、Dynamo、LevelDB(Google)。
扩展资料:
数据库的作用
数据库管理系统是为管理数据库而设计的电脑软件系统,一般具有存储、截取、安全保障、备份等基础功能。
数据库管理系统可以依据它所支持的数据库模型来作分类,例如关系式、XML;或依据所支持的计算机类型来作分类,例如服务器群集、移动电话。
或依据所用查询语言来作分类,例如SQL、XQuery;或依据性能冲量重点来作分类,例如最大规模、最高运行速度;亦或其他的分类方式。不论使用哪种分类方式,一些DBMS能够跨类别,例如,同时支持多种查询语言。
参考资料来源:百度百科--数据库
2019-06-26 广告
一、关系数据库
关系型数据库,存储的格式可以直观地反映实体间的关系。关系型数据库和常见的表格比较相似,关系型数据库中表与表之间是有很多复杂的关联关系的。
常见的关系型数据库有Mysql,SqlServer等。在轻量或者小型的应用中,使用不同的关系型数据库对系统的性能影响不大,但是在构建大型应用时,则需要根据应用的业务需求和性能需求,选择合适的关系型数据库。
虽然关系型数据库有很多,但是大多数都遵循SQL(结构化查询语言,Structured Query Language)标准。 常见的操作有查询,新增,更新,删除,求和,排序等。
查询语句:SELECT param FROM table WHERE condition 该语句可以理解为从 table 中查询出满足 condition 条件的字段 param。
新增语句:INSERT INTO table (param1,param2,param3) VALUES (value1,value2,value3) 该语句可以理解为向table中的param1,param2,param3字段中分别插入value1,value2,value3。
更新语句:UPDATE table SET param=new_value WHERE condition 该语句可以理解为将满足condition条件的字段param更新为 new_value 值。
删除语句:DELETE FROM table WHERE condition 该语句可以理解为将满足condition条件的数据全部删除。
去重查询:SELECT DISTINCT param FROM table WHERE condition 该语句可以理解为从表table中查询出满足条件condition的字段param,但是param中重复的值只能出现一次。
排序查询:SELECT param FROM table WHERE condition ORDER BY param1该语句可以理解为从表table 中查询出满足condition条件的param,并且要按照param1升序的顺序进行排序。
总体来说, 数据库的SELECT,INSERT,UPDATE,DELETE对应了我们常用的增删改查四种操作。
关系型数据库对于结构化数据的处理更合适,如学生成绩、地址等,这样的数据一般情况下需要使用结构化的查询,例如join,这样的情况下,关系型数据库就会比NoSQL数据库性能更优,而且精确度更高。
由于结构化数据的规模不算太大,数据规模的增长通常也是可预期的,所以针对结构化数据使用关系型数据库更好。关系型数据库十分注意数据操作的事务性、一致性,如果对这方面的要求关系型数据库无疑可以很好的满足。
二、非关系型数据库(NoSQL)
随着近些年技术方向的不断拓展,大量的NoSql数据库如MongoDB、Redis、Memcache出于简化数据库结构、避免冗余、影响性能的表连接、摒弃复杂分布式的目的被设计。
指的是分布式的、非关系型的、不保证遵循ACID原则的数据存储系统。NoSQL数据库技术与CAP理论、一致性哈希算法有密切关系。所谓CAP理论,简单来说就是一个分布式系统不可能满足可用性、一致性与分区容错性这三个要求,一次性满足两种要求是该系统的上限。
而一致性哈希算法则指的是NoSQL数据库在应用过程中,为满足工作需求而在通常情况下产生的一种数据算法,该算法能有效解决工作方面的诸多问题但也存在弊端,即工作完成质量会随着节点的变化而产生波动,当节点过多时,相关工作结果就无法那么准确。
这一问题使整个系统的工作效率受到影响,导致整个数据库系统的数据乱码与出错率大大提高,甚至会出现数据节点的内容迁移,产生错误的代码信息。
但尽管如此,NoSQL数据库技术还是具有非常明显的应用优势,如数据库结构相对简单,在大数据量下的读写性能好;能满足随时存储自定义数据格式需求,非常适用于大数据处理工作。
NoSQL数据库适合追求速度和可扩展性、业务多变的应用场景。
对于非结构化数据的处理更合适,如文章、评论,这些数据如全文搜索、机器学习通常只用于模糊处理,并不需要像结构化数据一样,进行精确查询,而且这类数据的数据规模往往是海量的,数据规模的增长往往也是不可能预期的;
而NoSQL数据库的扩展能力几乎也是无限的,所以NoSQL数据库可以很好的满足这一类数据的存储。
NoSQL数据库利用key-value可以大量的获取大量的非结构化数据,并且数据的获取效率很高,但用它查询结构化数据效果就比较差。
目前NoSQL数据库仍然没有一个统一的标准,它现在有四种大的分类:
1、键值对存储(key-value):代表软件Redis,它的优点能够进行数据的快速查询,而缺点是需要存储数据之间的关系。
2、列存储:代表软件Hbase,它的优点是对数据能快速查询,数据存储的扩展性强。而缺点是数据库的功能有局限性。
3、文档数据库存储:代表软件MongoDB,它的优点是对数据结构要求不特别的严格。而缺点是查询性的性能不好,同时缺少一种统一查询语言。
4、图形数据库存储:代表软件InfoGrid,它的优点可以方便的利用图结构相关算法进行计算。而缺点是要想得到结果必须进行整个图的计算,而且遇到不适合的数据模型时,图形数据库很难使用。
安全
数据库安全涉及保护数据库内容、其所有者和用户的所有各个方面。它的范围从防止有意的未经授权的数据库使用到未经授权的实体(例如,个人或计算机程序)无意的数据库访问。
数据库访问控制涉及控制谁(一个人或某个计算机程序)可以访问数据库中的哪些信息。该信息可以包括特定的数据库对象(例如,记录类型、特定记录、数据结构);
对特定对象的特定计算(例如,查询类型或特定查询),或者使用到前者的特定访问路径(例如,使用特定索引)或其他数据结构来访问信息)。
数据库访问控制由使用专用受保护安全 DBMS 接口的特别授权(由数据库所有者)人员设置。
这可以在个人基础上直接管理,或者通过将个人和特权分配给组,或者(在最复杂的模型中)通过将个人和组分配给角色,然后授予权利。数据安全可防止未经授权的用户查看或更新数据库。使用密码,用户可以访问整个数据库或它的子集,称为“子模式”。
例如,员工数据库可以包含有关单个员工的所有数据,但一组用户可能仅被授权查看工资数据,而其他用户仅被允许访问工作历史和医疗数据。如果 DBMS 提供了一种交互式输入和更新数据库以及查询数据库的方法,则此功能允许管理个人数据库。
数据安全通常涉及保护特定的数据块,包括物理保护(即免受损坏、破坏或移除;例如,参见物理安全),或将它们或它们的一部分解释为有意义的信息(例如,通过查看它们组成的位串,得出特定的有效信用卡号;例如,参见数据加密)。
更改和访问日志记录谁访问了哪些属性、更改了什么以及何时更改。日志服务通过保留访问发生和更改的记录,允许以后进行取证数据库审计。有时应用程序级代码用于记录更改而不是将其留给数据库。可以设置监控以尝试检测安全漏洞。
以上内容参考 百度百科-数据库
2018-09-17 · 百度知道合伙人官方认证企业
2013-10-26
ACCESS
SQLite
中型数据库,中等规模数据,多并发
MySQL
SQL SERVER 2000以下
大型数据库,多并发,大数据量
DB2
SQL SERVER 2005 以上
ORACLE