求此题过程,谢谢!
1个回答
2014-08-21
展开全部
(2) 由(1) b1=a2-2a1=5-2*1=3
所以bn=a(n+1)-2an=3*2^(n-1)
即an-2a(n-1)=3*2^(n-2)
则an/2^n-a(n-1)/2^(n-1)=3/4
所以cn-c(n-1)=3/4
故{cn}是公差为3/4的等差数列
所以bn=a(n+1)-2an=3*2^(n-1)
即an-2a(n-1)=3*2^(n-2)
则an/2^n-a(n-1)/2^(n-1)=3/4
所以cn-c(n-1)=3/4
故{cn}是公差为3/4的等差数列
追答
(3) 由(2) c1=a1/2=1/2
则cn=1/2+(n-1)*3/4=(3/4)n-1/4
即an/2^n=(3n-1)/4
所以通项公式an=(3n-1)*2^(n-2),
a(n-1)=(3n-4)* 2^(n-3),
由已知:Sn=4a(n-1)+2
所以Sn=4*(3n-4)* 2^(n-3) +2=(3n-4)* 2^(n-1)+2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询