已知双曲线C:a方分之x方-b方分之y方=1,的离心率为根号3,右准线方程x=3分之根号3,求双曲线方程。

设直线L是圆O:x方+y方=2上动点P(xo,yo)(xoyo≠0)处得切线,L与双曲线C交于不同两点A,B,证明角AOB大小为定值... 设直线L是圆O:x方+y方=2上动点P(xo,yo)(xoyo≠0)处得切线,L与双曲线C交于不同两点A,B,证明角AOB大小为定值 展开
522597089
2011-08-09 · TA获得超过6787个赞
知道大有可为答主
回答量:1170
采纳率:75%
帮助的人:815万
展开全部
分析:
(1).依题有a^2/c=sqrt(1/3),e=c/a=sqrt(3)
得a=1,c=sqrt(3),b=sqrt(2)
双曲线方程为 x^2-y^2/2=1......(1)
(2).设A(x1,y1),B(x2,y2),易见该问题中切线斜率存在
对方程 x^2+y^2=2两边求导有
2x+2yy'=0,得点P(xo,yo)处切线斜率
k=y'=-xo/yo
注意到P在圆上有 xo^2+yo^2=2
切线方程可写为:y=(-xo/yo)(x-xo)+yo
即:yoy=-xox+(xo^2+yo^2)
亦即:yoy=-xox+2......(2)
联立(1),(2)消去y整理有:
(2yo^2-xo^2)x^2+4xox-2yo^2-4=0
韦达定理有:
x1+x2=4xo/(xo^2-2yo^2)......(3)
x1x2=(2yo^2+4)/(xo^2-2yo^2)......(4)
又yo^2y1y2=(2-xox1)(2-xox2)
=4-2xo(x1+x2)+xo^2x1x2
则yo^2(x1x2+y1y2)=4-2xo(x1+x2)+(xo^2+yo^2)x1x2
=4-2xo(x1+x2)+2x1x2......(5)
将(3)(4)代入(5)整理有:
yo^2(x1x2+y1y2)=4[2-(xo^2+yo^2)]/(xo^2-2yo^2)=0
又yo!=0,则有x1x2+y1y2=0
可见OA垂直OB
因此,角AOB=Pi/2(定值)
(注:这样的问题可以试先取特殊值探索,比如本问题中可以取切线斜率为零,不难发现角AOB为pi/2,然后有针对性地去证明x1x2+y1y2=0就把问题解决了)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式