已知,三角形ABC的两边AB,AC的长是关于x的一元二次方程x·x-(2k+3)x+k·k+3k+
已知,三角形ABC的两边AB,AC的长是关于x的一元二次方程x·x-(2k+3)x+k·k+3k+2=0的两个实数根,第三边BC长为5。求当k为何值时,三角形是等腰三角形...
已知,三角形ABC的两边AB,AC的长是关于x的一元二次方程x·x-(2k+3)x+k·k+3k+2=0的两个实数根,第三边BC长为5。求当k为何值时,三角形是等腰三角形,并求出此时等腰三角形ABC的周长。
展开
4个回答
展开全部
(1)∵△ABC是以BC为斜边的直角三角形,BC=5,
∴AB2+AC2=25,
∵AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,
∴AB+AC=2k+3,AB•AC=k2+3k+2,
∴AB2+AC2=(AB+AC)2-2AB•AC,
即(2k+3)2-2(k2+3k+2)=25,
解得k=2或-5(舍去负数);
(2)∵△ABC是等腰三角形;
∴当AB=AC时,△=b2-4ac=0,
∴(2k+3)2-4(k2+3k+2)=0
解得k不存在;
当AB=BC时,即AB=5,
∴5+AC=2k+3,5AC=k2+3k+2,
解得k=3或4,
∴AC=4或6
∴△ABC的周长为14或16.
∴AB2+AC2=25,
∵AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,
∴AB+AC=2k+3,AB•AC=k2+3k+2,
∴AB2+AC2=(AB+AC)2-2AB•AC,
即(2k+3)2-2(k2+3k+2)=25,
解得k=2或-5(舍去负数);
(2)∵△ABC是等腰三角形;
∴当AB=AC时,△=b2-4ac=0,
∴(2k+3)2-4(k2+3k+2)=0
解得k不存在;
当AB=BC时,即AB=5,
∴5+AC=2k+3,5AC=k2+3k+2,
解得k=3或4,
∴AC=4或6
∴△ABC的周长为14或16.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询