二次函数题;已知抛物线y=x^2-(m+6)x+m+5

求证:(1)无论m取什么实数抛物线与x轴有一定点(2)抛物线与x轴交A,B两点,与y轴交C点,顶点为M,若△MAB为等腰直角三角形,求解析式... 求证:(1)无论m取什么实数抛物线与x轴有一定点
(2)抛物线与x轴交A,B两点,与y轴交C点,顶点为M,若△MAB为等腰直角三角形,求解析式
展开
拉奥尼
推荐于2016-05-11 · TA获得超过4532个赞
知道小有建树答主
回答量:1404
采纳率:0%
帮助的人:804万
展开全部
(1)证明:△=[-(m+6)]^2-4*1*(m+5)=(m+4)^2
无论m取何值,(m+4)^2≥0,
所以无论m取什么实数抛物线与x轴有一定点

(2)解:抛物线与x轴交A,B两点的坐标分别为(1,0)(m+5,0),顶点坐标为(1/2(m+6),-1/4(m+4)^2

当1/2(Ⅰm+4Ⅰ)=-1/4(m+4)^2时,△MAB为等腰直角三角形。

解得m=-4
所以解析式为y=x^2-2x+1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式