
tanx在x趋近于0的极限,为什么等价于x,求过程,要用大学高数方法,才上大一,谢谢
具体回答如下:
tanx=sinx/cosx
当x→0
tanx
=sinx
=x
和角公式:
sin ( α ± β ) = sinα · cosβ ± cosα · sinβ
sin ( α + β + γ ) = sinα · cosβ · cosγ + cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγ
cos ( α ± β ) = cosα cosβ ∓ sinβ sinα
tan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ∓ tanα tanβ )
lim(x→0)tanx/x
=lim(x→0)(sinx/x)*1/cosx
sinx/x极限是1,1/cosx极限也是1
所以lim(x→0)tanx/x=1
所以tanx~x
扩展资料:
常用等价无穷小:
1、e^x-1~x (x→0)
2、 e^(x^2)-1~x^2 (x→0)
3、1-cosx~1/2x^2 (x→0)
4、1-cos(x^2)~1/2x^4 (x→0)
5、sinx~x (x→0)
6、tanx~x (x→0)
7、arcsinx~x (x→0)
8、arctanx~x (x→0)
9、1-cosx~1/2x^2 (x→0)
10、a^x-1~xlna (x→0)
11、e^x-1~x (x→0)
12、ln(1+x)~x (x→0)
13、(1+Bx)^a-1~aBx (x→0)
14、[(1+x)^1/n]-1~1/nx (x→0)
15、loga(1+x)~x/lna(x→0)
当x→0,上式→sinx→x
x趋近于0分子sinx不等于零吗
对,都趋于零,所以才是等价