如图,D是AB上一点,E是AC上一点,BE,CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,求∠BDC和∠BFD的

kx1301
2011-08-09 · TA获得超过1.6万个赞
知道大有可为答主
回答量:919
采纳率:0%
帮助的人:1691万
展开全部
∵∠BDC是△ACD的外角
∴∠BDC=∠A+∠ACD=62°+35°=97°
在△BDF中
∵ ∠BDC+∠ABE+∠BFD=180°
∴∠BFD=180°-97°-20°=63°
8415556
2012-03-25 · TA获得超过323个赞
知道答主
回答量:31
采纳率:0%
帮助的人:9.3万
展开全部
∵∠A=62°,∠ADC=35°(已知)
∴∠BDC=∠A+∠ACD=62°+35°=97°(三角形的外角等于与它不相邻的两个内角)
∵∠ABE=20°(已知)
∴∠BFD=180°-∠ABE-∠BDC=180°-20°-97°=63°(三角形内角和定理)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
蜜紫幽感
2012-03-26 · TA获得超过117个赞
知道答主
回答量:46
采纳率:0%
帮助的人:17.5万
展开全部
解:(1)在△ACD中,∵∠A=62°,∠ACD=35°,
∴∠BDC=∠ACD+∠A=62°+35°=97°;

(2)在△BDF中,∠BFD=180°-∠ABE-∠BDF=180°-20°-97°=63°.
故答案为:(1)97°,(2)63°.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
90后女孩KK
2012-03-19 · TA获得超过941个赞
知道答主
回答量:226
采纳率:0%
帮助的人:72.5万
展开全部
在△ACD中,∵∠A=62°,∠ACD=35°,
∴∠BDC=∠ACD+∠A=62°+35°=97°;
在△BDF中,∠BFD=180°-∠ABE-∠BDF=180°-20°-97°=63°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友824fc81
2011-08-09 · TA获得超过117个赞
知道答主
回答量:89
采纳率:0%
帮助的人:37.9万
展开全部
图呢
追问
你等等哦
追答
嗯。。。在等
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式