已知整数X1,X2,X3,...X2008满足①-1≤Xn≤2,n=1,2,...2008;②X1
已知整数X1,X2,X3,...X2008满足①-1≤Xn≤2,n=1,2,...2008;②X1+X2+...X2008=208;③X1+X2+...X2008=200...
已知整数X1,X2,X3,...X2008满足①-1≤Xn≤2,n=1,2,...2008;②X1+X2+...X2008=208;③X1+X2+...X2008=2008。求X1+X2+...X2008的最大值与最小值。
展开
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
推荐于2016-04-08
展开全部
函数最值问题.
专题:计算题.
分析:根据设x1,x2,…,x2008中有q个0,r个-1,s个1,t个2,可得出等式即可求出x13+x23+…+x20083取最大值2408.
解答:解:设x1,x2,…,x2008中有q个0,r个-1,s个1,t个2.(2分)
则
-r+s+2t=200
r+s+4t=2008
①(5分)
两式相加得s+3t=1104.故0≤t≤368.(10分)
由x13+x23+…+x20083=-r+s+8t=6t+200,(12分)
得200≤x13+x23+…+x20083≤6×368+200=2408.(15分)
由方程组①知:当t=0,s=1104,r=904时,
x13+x23+…+x20083取最小值200; (17分)
当t=368,s=0,r=536时,
x13+x23+…+x20083取最大值2408.(20分)
点评:此题考查了函数的最值问题.解题的关键是通过已知分析求解得到x1=x2=x3=…=x2008=1.
专题:计算题.
分析:根据设x1,x2,…,x2008中有q个0,r个-1,s个1,t个2,可得出等式即可求出x13+x23+…+x20083取最大值2408.
解答:解:设x1,x2,…,x2008中有q个0,r个-1,s个1,t个2.(2分)
则
-r+s+2t=200
r+s+4t=2008
①(5分)
两式相加得s+3t=1104.故0≤t≤368.(10分)
由x13+x23+…+x20083=-r+s+8t=6t+200,(12分)
得200≤x13+x23+…+x20083≤6×368+200=2408.(15分)
由方程组①知:当t=0,s=1104,r=904时,
x13+x23+…+x20083取最小值200; (17分)
当t=368,s=0,r=536时,
x13+x23+…+x20083取最大值2408.(20分)
点评:此题考查了函数的最值问题.解题的关键是通过已知分析求解得到x1=x2=x3=…=x2008=1.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询