一道初二的题目,请知道的亲帮帮忙,过程要清晰具体哦,谢谢!
分别以平行四边形ABCD(角CDA不等于90度)的三边AB,CD,DA为斜边作等腰直角三角形,分别是△ABE△CDG△ADF.1.如图①,当三个等腰直角三角形都在该平行四...
分别以平行四边形ABCD(角CDA不等于90度)的三边AB,CD,DA为斜边作等腰直角三角形,分别是△ABE△CDG△ADF.
1.如图①,当三个等腰直角三角形都在该平行四边行外部时,连接GF和EF。请判断GF与EF的关系(写出结论,简单分析过程)
2.如图②,当三个等腰直角三角形都在该平行四边行内部时,连接GF和EF,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由。 展开
1.如图①,当三个等腰直角三角形都在该平行四边行外部时,连接GF和EF。请判断GF与EF的关系(写出结论,简单分析过程)
2.如图②,当三个等腰直角三角形都在该平行四边行内部时,连接GF和EF,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由。 展开
展开全部
解:(1)∵四边形ABCD是平行四边形,
∴AB=CD,∠DAB+∠ADC=180°,
∵△ABE,△CDG,△ADF都是等腰直角三角形,
∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°,
∴∠GDF=∠GDC+∠CDA+∠ADF=90°+∠CDA,
∠EAF=360°-∠BAE-∠DAF-∠BAD=270°-(180°-∠CDA)=90°+∠CDA,
∴∠FDG=∠EAF,
∵在△EAF和△GDF中,
DF=AF∠FDG=∠FAEDG=AE,
∴△EAF≌△GDF(SAS),
∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA,
∴∠GFE=90°,
∴GF⊥EF;
(2)GF⊥EF,GF=EF成立;
理由:∵四边形ABCD是平行四边形,
∴AB=CD,∠DAB+∠ADC=180°,
∵△ABE,△CDG,△ADF都是等腰直角三角形,
∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°,
∴∠BAE+∠DAF+∠EAF+∠ADF+∠FDC=180°,
∴∠EAF+∠CDF=45°,
∵∠CDF+∠GDF=45°,
∴∠FDG=∠EAF,
∵在△EAF和△GDF中,
DF=AF∠FDG=∠FAEDG=AE,
∴△EAF≌△GDF(SAS),
∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA,
∴∠GFE=90°,
∴GF⊥EF.请采纳
∴AB=CD,∠DAB+∠ADC=180°,
∵△ABE,△CDG,△ADF都是等腰直角三角形,
∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°,
∴∠GDF=∠GDC+∠CDA+∠ADF=90°+∠CDA,
∠EAF=360°-∠BAE-∠DAF-∠BAD=270°-(180°-∠CDA)=90°+∠CDA,
∴∠FDG=∠EAF,
∵在△EAF和△GDF中,
DF=AF∠FDG=∠FAEDG=AE,
∴△EAF≌△GDF(SAS),
∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA,
∴∠GFE=90°,
∴GF⊥EF;
(2)GF⊥EF,GF=EF成立;
理由:∵四边形ABCD是平行四边形,
∴AB=CD,∠DAB+∠ADC=180°,
∵△ABE,△CDG,△ADF都是等腰直角三角形,
∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°,
∴∠BAE+∠DAF+∠EAF+∠ADF+∠FDC=180°,
∴∠EAF+∠CDF=45°,
∵∠CDF+∠GDF=45°,
∴∠FDG=∠EAF,
∵在△EAF和△GDF中,
DF=AF∠FDG=∠FAEDG=AE,
∴△EAF≌△GDF(SAS),
∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA,
∴∠GFE=90°,
∴GF⊥EF.请采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询