在三角形ABC中,角ACB等于90度,AC=BC,直线MN经过点C,且AD垂直MN于D,BE垂直M
在三角形ABC中,角ACB等于90度,AC=BC,直线MN经过点C,且AD垂直MN于D,BE垂直MN于E。(1)当直线MN绕点C旋转到图一的位置时,求证,DE=AD+BE...
在三角形ABC中,角ACB等于90度,AC=BC,直线MN经过点C,且AD垂直MN于D,BE垂直MN于E。 (1)当直线MN绕点C旋转到图一的位置时,求证,DE=AD+BE。 (2)当直线MN绕点C旋转到图二的位置时,求证,DE=AD-BE。 (3)当直线MN绕点C旋转到图三的位置时,试问,DE.AD.BE有怎样的等量关系,请写出这个等量关系,并加以证明。求解题过程(^_^)谢谢
展开
2个回答
展开全部
MN交AB,∠ACN>∠BCN
那么DE=AD-BE
∵AD⊥MN,BE⊥MN
∴△ACD和△BCE是直角三角形
∴∠CAD+∠ACD=90°
∠ACD+∠BCE=∠ACB=90°
∴∠CAD=∠BCE
∵AC=BC
∠ADC=∠CEB=90°
∴Rt△ACD≌Rt△BCE(AAS)
∴CE=AD,BE=CD
∴DE=CE-CD=AD-BE
性质
①在同一平面内,过一点有且只有一条直线与已知直线垂直。垂直一定会出现90°。
② 连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
③点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
展开全部
解:
(1)∵△ABC中,∠ACB=90°,
∴∠ACD+∠BCE=90°,
又直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°
∴∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,
∠ADC=∠CEB=90°(已证)
∠DAC=∠ECB(已证)
AC=BC(已知)
∴△ADC≌△CEB(AAS),
∴CD=BE,CE=AD,
∴DE=CD+CE=AD+BE;
(2)∵△ABC中,∠ACB=90°,
直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,
而AC=BC,
∴△ADC≌△CEB,
∴CD=BE,CE=AD,
∴DE=CE-CD=AD-BE;
(3)
∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,
∴∠ACD=∠CBE,
∵AC=BC,
∴△ADC≌△CEB,
∴CD=BE,CE=AD,
∴DE=CD-CE=BE-AD;
DE、AD、BE之间的关系为DE=BE-AD.
如果你认可我的回答,请点击“采纳回答”,祝学习进步!
手机提问的朋友在客户端右上角评价点【评价】,然后就可以选择【满意,问题已经完美解决】了
(1)∵△ABC中,∠ACB=90°,
∴∠ACD+∠BCE=90°,
又直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°
∴∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,
∠ADC=∠CEB=90°(已证)
∠DAC=∠ECB(已证)
AC=BC(已知)
∴△ADC≌△CEB(AAS),
∴CD=BE,CE=AD,
∴DE=CD+CE=AD+BE;
(2)∵△ABC中,∠ACB=90°,
直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,
而AC=BC,
∴△ADC≌△CEB,
∴CD=BE,CE=AD,
∴DE=CE-CD=AD-BE;
(3)
∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,
∴∠ACD=∠CBE,
∵AC=BC,
∴△ADC≌△CEB,
∴CD=BE,CE=AD,
∴DE=CD-CE=BE-AD;
DE、AD、BE之间的关系为DE=BE-AD.
如果你认可我的回答,请点击“采纳回答”,祝学习进步!
手机提问的朋友在客户端右上角评价点【评价】,然后就可以选择【满意,问题已经完美解决】了
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询