已知函数f(x)=ex+x2-x,若对任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤k恒成立,则k的取值范围是(
已知函数f(x)=ex+x2-x,若对任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤k恒成立,则k的取值范围是()A.[e-1,+∞)B.[e,+∞)C.[e...
已知函数f(x)=ex+x2-x,若对任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤k恒成立,则k的取值范围是( )A.[e-1,+∞)B.[e,+∞)C.[e+1,+∞)D.[1,+∞)
展开
1个回答
展开全部
∵f(x)=ex+x2-x,
∴f′(x)=ex+2x-1,
由f′(x)=ex+2x-1=0,得x=0.又f′(x)单调递增,可知f′(x)=0有唯一零点0,
∵f(-1)=
+2,f(1)=e,f(0)=1.
∴函数f(x)=ex+x2-x在[-1,1]内的最大值是e,最小值是1.
∴函数f(x)=ex+x2-x,对任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1.
∵函数f(x)=ex+x2-x对任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤k恒成立,
∴k≥e-1.
∴k的取值范围为[e-1,+∞).
故选:A.
∴f′(x)=ex+2x-1,
由f′(x)=ex+2x-1=0,得x=0.又f′(x)单调递增,可知f′(x)=0有唯一零点0,
∵f(-1)=
1 |
e |
∴函数f(x)=ex+x2-x在[-1,1]内的最大值是e,最小值是1.
∴函数f(x)=ex+x2-x,对任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1.
∵函数f(x)=ex+x2-x对任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤k恒成立,
∴k≥e-1.
∴k的取值范围为[e-1,+∞).
故选:A.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询