如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射
如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时...
如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.
展开
1个回答
展开全部
(1)证明:如图1,
∵EN∥AD,
∴∠MAD=∠MNE,∠ADM=∠NEM.
∵点M为DE的中点,
∴DM=EM.
在△ADM和△NEM中,
∴
.
∴△ADM≌△NEM.
∴AM=MN.
∴M为AN的中点.
(2)证明:如图2,
∵△BAD和△BCE均为等腰直角三角形,
∴AB=AD,CB=CE,∠CBE=∠CEB=45°.
∵AD∥NE,
∴∠DAE+∠NEA=180°.
∵∠DAE=90°,
∴∠NEA=90°.
∴∠NEC=135°.
∵A,B,E三点在同一直线上,
∴∠ABC=180°-∠CBE=135°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已证),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
(3)△ACN仍为等腰直角三角形.
证明:如图3,此时A、B、N三点在同一条直线上.
∵AD∥EN,∠DAB=90°,
∴∠ENA=∠DAN=90°.
∵∠BCE=90°,
∴∠CBN+∠CEN=360°-90°-90°=180°.
∵A、B、N三点在同一条直线上,
∴∠ABC+∠CBN=180°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已证),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
∵EN∥AD,
∴∠MAD=∠MNE,∠ADM=∠NEM.
∵点M为DE的中点,
∴DM=EM.
在△ADM和△NEM中,
∴
|
∴△ADM≌△NEM.
∴AM=MN.
∴M为AN的中点.
(2)证明:如图2,
∵△BAD和△BCE均为等腰直角三角形,
∴AB=AD,CB=CE,∠CBE=∠CEB=45°.
∵AD∥NE,
∴∠DAE+∠NEA=180°.
∵∠DAE=90°,
∴∠NEA=90°.
∴∠NEC=135°.
∵A,B,E三点在同一直线上,
∴∠ABC=180°-∠CBE=135°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已证),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
|
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
(3)△ACN仍为等腰直角三角形.
证明:如图3,此时A、B、N三点在同一条直线上.
∵AD∥EN,∠DAB=90°,
∴∠ENA=∠DAN=90°.
∵∠BCE=90°,
∴∠CBN+∠CEN=360°-90°-90°=180°.
∵A、B、N三点在同一条直线上,
∴∠ABC+∠CBN=180°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已证),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
|
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询