极限为±无穷极限算存在还是不存在?

 我来答
教育小百科达人
2019-05-08 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:475万
展开全部

分情况,如果函数的极限为±无穷,那么极限算不存在。无穷大并不是极限的存在,它只是表明当x趋向于无穷或某一特定值时f(x)趋向于无穷大,而极限存在必定为某一特定值A。

“当n>N时,均有不等式|xn-a|<ε成立”意味着:所有下标大于N的x0都落在(a-ε,a+ε)内;而在(a-ε,a+ε)之外,数列{xn} 中的项至多只有N个(有限个)。

如果存在某 ε0>0,使数列{xn} 中有无穷多个项落在(a-ε0,a+ε0) 之外,则{xn} 一定不以a为极限。

扩展资料:

设{xn} 是一个数列,如果对任意ε>0,存在N∈Z*,只要 n 满足 n > N,则对于任意正整数p,都有|xn+p-xn|<ε,这样的数列{xn} 便称为柯西数列。

这种渐进稳定性与收敛性是等价的。即为充分必要条件。

有限到无限是从量变到质变;有限集的性质不能推广到无限,反之亦然;要依靠理性的论证,而不是直观和常识来认识无限。

参考资料来源:百度百科——极限

轮看殊O
高粉答主

2019-05-08 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:752万
展开全部

如果函数的极限为±无穷,那么极限算不存在。无穷大并不是极限的存在,它只是表明当x趋向于无穷或某一特定值时f(x)趋向于无穷大,而极限存在必定为某一特定值A。

与无穷大定义比较便可得知无穷大并不是极限的存在,它只是表明当x趋向于无穷或某一特定值时f(x)趋向于无穷大,而极限存在必定为某一特定值A(就算是极限为派或e,它也是一个特定的、实实在在存在的东西)。

扩展资料

在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。

1.方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;

2.方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;

3.A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;

4.A的列向量组也是正交单位向量组。

5.正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵 。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
暮不语
高粉答主

推荐于2019-09-06 · 说的都是干货,快来关注
知道小有建树答主
回答量:421
采纳率:100%
帮助的人:16.3万
展开全部

如果函数的极限为±无穷,那么极限算不存在。无穷大并不是极限的存在,它只是表明当x趋向于无穷或某一特定值时f(x)趋向于无穷大,而极限存在必定为某一特定值A。

扩展资料

设函数f(x)在x0的某一去心邻域内有定义(或|x|大于某一正数时有定义)。如果对于任意给定的正数M(无论它多么大),总存在正数δ(或正数X),只要x适合不等式0<|x-x0|<δ(或|x|>X,即x趋于无穷),对应的函数值f(x)总满足不等式|f(x)|>M,则称函数f(x)为当x→x0(或x→∞)时的无穷大。

在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。

无穷大记作∞,不可与很大的数混为一谈。

无穷大分为正无穷大、负无穷大,分别记作+∞、-∞ ,非常广泛的应用于数学当中。

两个无穷大量之和不一定是无穷大;有界量与无穷大量的乘积不一定是无穷大(如常数0就算是有界函数);有限个无穷大量之积一定是无穷大。

参考资料百度百科-无穷大

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
StentyLegend
推荐于2017-11-18 · TA获得超过1653个赞
知道答主
回答量:13
采纳率:0%
帮助的人:11.2万
展开全部
同学,请你再仔细看一下极限的定义,与无穷大定义比较便可得知无穷大并不是极限的存在,它只是表明当x趋向于无穷或某一特定值时f(x)趋向于无穷大,而极限存在必定为某一特定值A(就算是极限为派或e,它也是一个特定的、实实在在存在的东西)。这也可以算作你追问的解答了,因为无穷小的本质便是极限为零(零便是特定值),P.S(冒昧一问同学现在是大学生吗(可以无视))
追问
我是啊 基础差 概念没吃透啊 我到现在还没理解为什么好多定理里面要加上左右临域的意义啊
追答
领域的作用简单点说就是限定。以函数极限为例:∀ε > 0, 若 ∃δ>0, 当 0 < | x − x0 | < δ时,
| f ( x) − a | < ε成立 , 则称 a 为函数 f ( x) 当 x → x0 时的极限 。其中,不等式0 < | x − x0 | < δ表示一个去心领域,它的存在就限定了x的取值范围,或者说它是一个准入门槛,达到这个标准才有资格进入下一个不等式| f ( x) − a | < ε。可以说领域使得函数极限的定义更为严谨、逻辑性更强。其他情况下,领域也含有类似的效果。(PS:本人能力有限,如对回答不满请提出意见,或询问他人,以免被我误导(-_-). )
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2019-03-31
展开全部
极限无穷大,无穷大包含正,负无穷大,(扩展e和arctan的无穷次方要分正负无穷讨论) 与极限存在必唯一矛盾 所以不存在,还有震荡,如x->0,cos1/x,左右极限不等也是极限不存在
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式