求定积分 ∫(1,e) [lnx/x^3]dx 求过程谢谢诶

吉禄学阁

2011-08-09 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62493

向TA提问 私信TA
展开全部
先求不定积分部分:
∫ lnxdx/(x^3)
=-1/2∫ lnxd[x^(-2)]
=-lnx*x^(-2)/2+1/2∫ x^(-2)d(lnx) 此步骤为分步积分法。
=-lnx*x^(-2)/2+1/2∫ x^(-3)dx
=-lnx*x^(-2)/2-x^(-2)/4
再代入数值,可求出定积分,则有:
∫(1,e) [lnx/x^3]dx=[1+3e^(-2)]/4.
百度网友4b2f1aa
2011-08-09 · TA获得超过2628个赞
知道小有建树答主
回答量:1163
采纳率:100%
帮助的人:1457万
展开全部
先求出被积函数的不定积分。
∫lnx/x³dx=-1/3∫lnxd(1/x²)
应用分部积分法可得
∫lnxd(1/x²)=lnx/x²-∫1/x²d(lnx)
=lnx/x²-∫1/x³dx
=lnx/x²+1/(2x²)+c
故所求定积分为
=-1/3(3/(2e²)-1/2)
=1/6-1/(2e²)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式