数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.(1)求数列{an}的

数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.(1)求数列{an}的通项公式;(2)设数列{bn}的前n项和为Tn,且... 数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.(1)求数列{an}的通项公式;(2)设数列{bn}的前n项和为Tn,且bn=lnnxan2,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2. 展开
 我来答
枫岛HO328
2014-09-27 · TA获得超过192个赞
知道答主
回答量:127
采纳率:0%
帮助的人:73.3万
展开全部
(1)根据题意,对于任意n∈N*,总有an,Sn,an2成等差数列,则对于n∈N*,总有2Sn=an+an2①成立
2Sn?1an?1+an?1 2(n≥2)②
①-②得2an=an+an2-an-1-an-12,即an+an-1=(an+an-1)(an-an-1);
∵an,an-1均为正数,
∴an-an-1=1(n≥2)
∴数列{an}是公差为1的等差数列,
又n=1时,2S1=a1+a12,解得a1=1
∴an=n.(n∈N*
(2)证明:由(1)的结论,an=n;对任意实数x∈(1,e],有0<lnx<1,
对于任意正整数n,总有bn
lnnx
an2
1
n2

Tn
1
12
+
1
22
+…+
1
n2
<1+
1
1?2
+
1
2?3
+…+
1
(n?1)n

=1+1?
1
2
+
1
2
?
1
3
+…+
1
n?1
?
1
n
=2?
1
n
<2

对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式