已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-2=0对称;(1)求圆C2的方程,(2)过点(2,0)

已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-2=0对称;(1)求圆C2的方程,(2)过点(2,0)作圆C2的切线l,求直线l的方程.... 已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-2=0对称;(1)求圆C2的方程,(2)过点(2,0)作圆C2的切线l,求直线l的方程. 展开
 我来答
孛强糕8317
推荐于2016-12-01 · 超过78用户采纳过TA的回答
知道答主
回答量:141
采纳率:62%
帮助的人:70.2万
展开全部
(1)在圆C2上任取一点M(x,y),此点关于直线x-y-2=0的对称点为N(m,n)
y-n
x-m
=-1
1
2
(x+m)-
1
2
(y+n)-2=0
,解得
m=y+2
n=x-2

∵点N(m,n)即N(y+2,x-2)在圆C1:(x+1)2+(y-1)2=1上,
∴(y+2+1)2+(x-2-1)2=1,
化简得(x-3)2+(y+3)2=1,即为圆C2的方程;
(2)设经过点(2,0)圆C2的切线l方程为y=k(x-2),
∵圆C2的方程为(x-3)2+(y+3)2=1,
∴圆心为C2(3,-3),半径r=1.
∵直线l与圆C2相切,
∴点C2到直线l的距离等于半径,即
|3k+3-2k|
k2+1
=1

解之得k=-
4
3
,得切线l方程为y=-
4
3
(x-2),化简得4x+3y-8=0;
当直线l的斜率不存在时,方程为x=2,也满足直线l与圆C2相切.
综上所述,可得点(2,0)的圆C2的切线l方程为x=2或4x+3y-8=0.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式