已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn.(1)求an及Sn;(2)令bn=2nan(n∈N*),
已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn.(1)求an及Sn;(2)令bn=2nan(n∈N*),求数列{bn}的前n项和Tn....
已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn.(1)求an及Sn;(2)令bn=2nan(n∈N*),求数列{bn}的前n项和Tn.
展开
1个回答
展开全部
(1)设等差数列{an},公差为d
∵a3=7,a5+a7=26
∴
解得a1=3,d=2
∵an=a1+(n?1)d,Sn=
∴an=2n+1,Sn=n(n+2)
(2)由(1)知bn=2nan=2n(2n+1)
∴Tn=3?21+5?22+…+(2n+1)?2n
2Tn=3?22+5?23+…+(2n-1)?2n+(2n+1)?2n+1
两式相减可得,-Tn=6+2(22+23+…+2n)-(2n+1)?2n+1
=6+
?(2n+1)?2n+1
=-2+2n+2-(2n+1)?2n+1
Tn=(2n?1)?2n+1+2
∵a3=7,a5+a7=26
∴
|
∵an=a1+(n?1)d,Sn=
n(a1+an) |
2 |
∴an=2n+1,Sn=n(n+2)
(2)由(1)知bn=2nan=2n(2n+1)
∴Tn=3?21+5?22+…+(2n+1)?2n
2Tn=3?22+5?23+…+(2n-1)?2n+(2n+1)?2n+1
两式相减可得,-Tn=6+2(22+23+…+2n)-(2n+1)?2n+1
=6+
8(1?2n?1) |
1?2 |
=-2+2n+2-(2n+1)?2n+1
Tn=(2n?1)?2n+1+2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询