在平面直角坐标系xoy中,以点A(3,0)为圆心,5为半径的圆与x轴相交于点B、C(点B在点C的左边),与y轴

在平面直角坐标系xoy中,以点A(3,0)为圆心,5为半径的圆与x轴相交于点B、C(点B在点C的左边),与y轴相交于点D、M(点D在点M的下方).(1)求以直线x=3为对... 在平面直角坐标系xoy中,以点A(3,0)为圆心,5为半径的圆与x轴相交于点B、C(点B在点C的左边),与y轴相交于点D、M(点D在点M的下方).(1)求以直线x=3为对称轴,且经过D、C两点的抛物线的解析式;(2)若E为直线x=3上的任一点,则在抛物线上是否存在这样的点F,使得以点B、C、E、F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,说明理由. 展开
 我来答
湘西土匪0oAs
推荐于2016-01-23 · 超过59用户采纳过TA的回答
知道答主
回答量:129
采纳率:0%
帮助的人:146万
展开全部
解:(1)如图,∵圆以点A(3,0)为圆心,5为半径,
∴根据圆的对称性可知 B(-2,0),C(8,0).
连接AD.
在Rt△AOD中,∠AOD=90°,OA=3,AD=5,
∴OD=4.
∴点D的坐标为(0,-4).
设抛物线的解析式为y=ax2+bx-4,
又∵抛物线经过点C(8,0),且对称轴为x=3,
?
b
2a
=3
64a+8b?4=0.

解得  
a=
1
4
b=?
3
2
.

∴所求的抛物线的解析式为 y=
1
4
x2?
3
2
x?4


(2)存在符合条件的点F,使得以点B、C、E、F为顶点的四边形是平行四边形.
分两种情况.
Ⅰ:当BC为平行四边形的一边时,
必有 EF∥BC,且EF=BC=10.
∴由抛物线的对称性可知,
存在平行四边形BCEF1和平行四边形CBEF2.如(图1).
∵E点在抛物线的对称轴上,∴设点E为(3,e),且e>0.
则F1(-7,t),F2(13,t).
将点F1、F2分别代入抛物线的解析式,解得 t=
75
4

∴F点的坐标为F1(?7,
75
4
)
F2(13,
75
4
)

Ⅱ:当BC为平行四边形的对角线时,
必有AE=AF,如(图2).
∵点F在抛物线上,∴点F必为抛物线的顶点.
y=
1
4
x2?
3
2
x?4=
1
4
(x?3)2?
25
4

知抛物线的顶点坐标是(3,?
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消