已知偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是(  )A.f(a+

已知偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是()A.f(a+1)≥f(b+2)B.f(a+1)>f(b+2)C... 已知偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是(  )A.f(a+1)≥f(b+2)B.f(a+1)>f(b+2)C.f(a+1)≤f(b+2)D.f(a+1)<f(b+2) 展开
 我来答
神降6vm
2014-09-17 · 超过61用户采纳过TA的回答
知道答主
回答量:122
采纳率:0%
帮助的人:119万
展开全部
∵y=loga|x-b|是偶函数
∴loga|x-b|=loga|-x-b|
∴|x-b|=|-x-b|
∴x2-2bx+b2=x2+2bx+b2
整理得4bx=0,由于x不恒为0,故b=0
由此函数变为y=loga|x|
当x∈(-∞,0)时,由于内层函数是一个减函数,
又偶函数y=loga|x-b|在区间(-∞,0)上递增
故外层函数是减函数,故可得0<a<1
综上得0<a<1,b=0
∴a+1<b+2,而函数f(x)=loga|x-b|在(-∞,0)上单调递减
∴f(a+1)>f(b+2)
故选B.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式