(2014?湛江一模)如图,三棱柱ABC-A1B1C1中,△ABC是正三角形,AA1=AB=2,平面ACC1A1⊥平面ABC,∠A1AC=

(2014?湛江一模)如图,三棱柱ABC-A1B1C1中,△ABC是正三角形,AA1=AB=2,平面ACC1A1⊥平面ABC,∠A1AC=60°.(1)证明:A1B⊥AC... (2014?湛江一模)如图,三棱柱ABC-A1B1C1中,△ABC是正三角形,AA1=AB=2,平面ACC1A1⊥平面ABC,∠A1AC=60°.(1)证明:A1B⊥AC;(2)求二面角B-A1C1-C的余弦值;(3)设点N是平面ACC1A1内的动点,求BN+B1N的最小值. 展开
 我来答
劉之言
2015-01-05 · TA获得超过134个赞
知道答主
回答量:135
采纳率:40%
帮助的人:56.1万
展开全部
(本小题满分14分)
(1)证明:∵AA1=AB=2,△ABC是正三角形,
∴AC=AB=2,
∴AA1=AC,
又∵∠A1AC=60°,
∴△A1AC是正三角形,
取AC中点D,连结A1D、BD,则A1D⊥AC,BD⊥AC
又∵A1D∩BD=D,A1D?平面A1BD,BD?平面A1BD,
∴AC⊥平面A1BD,
又∵A1B?平面A1BD,
∴A1B⊥AC.
(2)解:A1C1∥AC,由(1)知A1B⊥AC,A1D⊥AC,
∴A1B⊥A1C1,A1D⊥A1C1
∴∠BA1D就是二面角B-A1C1-C的平面角;
∵平面ACC1A1⊥平面ABC,平面ACC1A1∩平面ABC=AC,
A1D?平面ACC1A1,A1D⊥AC,
∴A1D⊥平面ABC.
∵BD?平面ABC,
∴A1D⊥BD.,
Rt△A1BD 中, BD=
3
 , A1D=
3
 , A1B=
BD2+A1D2
=
6

cos∠BA1D=
BD
A1B
=
2
2

(3)解:延长BD至E使DE=BD,连结AE、CE、B1E,
则B1E就是BN+B1N的最小值,
以A为原点建立如图所示的空间直角坐标系,
则点E的坐标为(
3
 , 1 , 0)

B1的坐标是(-
3
 , 2 , 
3
)

B
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式