已知数列{an}满足:a1=1,an+1=an+1n为奇数2ann为偶数(n∈N*),设bn=a2n-1.(I)求b2,b3,并证明:bn+
已知数列{an}满足:a1=1,an+1=an+1n为奇数2ann为偶数(n∈N*),设bn=a2n-1.(I)求b2,b3,并证明:bn+1=2bn+2;(II)①证明...
已知数列{an}满足:a1=1,an+1=an+1n为奇数2ann为偶数(n∈N*),设bn=a2n-1.(I)求b2,b3,并证明:bn+1=2bn+2;(II)①证明:数列{bn+2}为等比数列;②若a2k,a2k+1,9+a2k+2成等比数列,求正整数k的值.
展开
1个回答
展开全部
(I)∵数列{an}满足:a1=1,an+1=
(n∈N*),设bn=a2n-1,
∴b2=a3=2a2=2(a1+1)=4,
b3=a5=2a4=2(a3+1)=10,
同理,bn+1=a2n+1=2a2n=2(a2n+1+1)=2(bn+1)=2bn+2.
(II)①b1=a1=1,b1+2≠0,
=
=2,
∴数列{bn+2}为等比数列.
②由①知bn+2=3×2n?1,
∴bn=3×2n?1?2,
∴a2n+1=3×2n?1?2,
a2n=a2n?1+1=3×2n?1?1,
∵a2k,a2k+1,9+a2k+2成等比数列,
∴(3×2k-2)2=(3-2k-1-1)(3×2k+8),
令2k=t,得(3t-2)2=(
t?1)(3t+8),
整理,得3t2-14t+8=0,
解得t=
或t=4,
∵k∈N*,∴2k=4,解得k=2.
|
∴b2=a3=2a2=2(a1+1)=4,
b3=a5=2a4=2(a3+1)=10,
同理,bn+1=a2n+1=2a2n=2(a2n+1+1)=2(bn+1)=2bn+2.
(II)①b1=a1=1,b1+2≠0,
bn+1+2 |
bn+2 |
2bn+2+2 |
bn+2 |
∴数列{bn+2}为等比数列.
②由①知bn+2=3×2n?1,
∴bn=3×2n?1?2,
∴a2n+1=3×2n?1?2,
a2n=a2n?1+1=3×2n?1?1,
∵a2k,a2k+1,9+a2k+2成等比数列,
∴(3×2k-2)2=(3-2k-1-1)(3×2k+8),
令2k=t,得(3t-2)2=(
3 |
2 |
整理,得3t2-14t+8=0,
解得t=
2 |
3 |
∵k∈N*,∴2k=4,解得k=2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询