已知cos(a-B/2)=-1/9,sin(a/2-B)=2/3,且π/2<a<π,0<B<π/2,求cos(a/2+B/2)的值
1个回答
展开全部
由于a/2+B/2=(a-B/2)-(a/2-B),故
cos(a/2+B/2)=cos[(a-B/2)-(a/2-B)]
=cos(a-B/2)cos(a/2-B)+sin(a-B/2)sin(a/2-B)
由π/2<a<π,0<B<π/2得π/4<a/2<π/2,0<B/2<π/4,于是π/4<a-B/2<π,-π/4<a/2-B<π/2
又cos(a-B/2)=-1/9,sin(a/2-B)=2/3,故sin(a-B/2)=(4倍根号5)/9,cos(a/2-B)=(根号5)/3
因此cos(a/2+B/2)=(7倍根号5)/27
cos(a/2+B/2)=cos[(a-B/2)-(a/2-B)]
=cos(a-B/2)cos(a/2-B)+sin(a-B/2)sin(a/2-B)
由π/2<a<π,0<B<π/2得π/4<a/2<π/2,0<B/2<π/4,于是π/4<a-B/2<π,-π/4<a/2-B<π/2
又cos(a-B/2)=-1/9,sin(a/2-B)=2/3,故sin(a-B/2)=(4倍根号5)/9,cos(a/2-B)=(根号5)/3
因此cos(a/2+B/2)=(7倍根号5)/27
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询