2015-01-09 · 知道合伙人教育行家
关注
展开全部
就是二阶导的问题,图形是(向上)凹的,或图形是(向上)凸的
设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1]
f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),
若不等号严格成立,即"<"号成立,则称f(x)在I上是严格凹函数。
如果"<="换成">="就是凸函数。类似也有严格凸函数。[1]
设f(x)在区间D上连续,如果对D上任意两点a、b恒有
f((a+b)/2)<(f(a)+f(b))/2
那么称f(x)在D上的图形是(向上)凹的(或凹弧);如果恒有
f((a+b)/2)>(f(a)+f(b))/2
那么称f(x)在D上的图形是(向上)凸的(或凸弧)
这个定义从几何上看就是:
在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。[1]
直观上看,凸函数就是图象向上突出来的。比如
如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凹函数的充要条件是f''(x)>=0;f(x)在区间I上是凸函数的充要条件是f''(x)<=0;[1-2]
不过补充一下,中国数学界关于函数凹凸性定义和国外很多定义是反的。Convex Function在国内的数学书中指凹函数。Concave Function指凸函数。在国内涉及经济学的很多书中,凹凸性的提法和国外的提法是一致的,也就是和单纯的数学教材是反的。很头大的问题。[1]
另外,国内各不同学科教材、辅导书的关于凹凸的说法也是相反的。一般来说,可按如下方法准确说明:
1、f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2) , 即V型,为“凸向原点”,或“下凸”(也可说上凹),(有的简称凸有的简称凹)
2、f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2) , 即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)
凸/凹向原点这种说法一目了然。上下凸的说法也没有歧义[2]
在二维环境下,就是通常所说的平面直角坐标系中,可以通过画图直观地看出一条二维曲线是凸还是凹,当然它也对应一个解析表示形式,就是那个不等式。但是,在多维情况下,图形是画不出来的,这就没法从直观上理解“凹”和“凸“的含义了,只能通过表达式,当然n维的表达式比二维的肯定要复杂,但是,不管是从图形上直观理解还是从表达式上理解,都是描述的同一个客观事实。而且,按照函数图形来定义的凹凸和按照函数来定义的凹凸正好相反。
琴生(Jensen)不等式(也称为詹森不等式):(注意前提、等号成立条件)设f(x)为凸函数,则f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);设f(x)为凹函数,f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n(上凸),称为琴生不等式。
加权形式为:f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中ai≥0(i=1,2,……,n),且a1+a2+……+an=1.
设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1]
f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),
若不等号严格成立,即"<"号成立,则称f(x)在I上是严格凹函数。
如果"<="换成">="就是凸函数。类似也有严格凸函数。[1]
设f(x)在区间D上连续,如果对D上任意两点a、b恒有
f((a+b)/2)<(f(a)+f(b))/2
那么称f(x)在D上的图形是(向上)凹的(或凹弧);如果恒有
f((a+b)/2)>(f(a)+f(b))/2
那么称f(x)在D上的图形是(向上)凸的(或凸弧)
这个定义从几何上看就是:
在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。[1]
直观上看,凸函数就是图象向上突出来的。比如
如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凹函数的充要条件是f''(x)>=0;f(x)在区间I上是凸函数的充要条件是f''(x)<=0;[1-2]
不过补充一下,中国数学界关于函数凹凸性定义和国外很多定义是反的。Convex Function在国内的数学书中指凹函数。Concave Function指凸函数。在国内涉及经济学的很多书中,凹凸性的提法和国外的提法是一致的,也就是和单纯的数学教材是反的。很头大的问题。[1]
另外,国内各不同学科教材、辅导书的关于凹凸的说法也是相反的。一般来说,可按如下方法准确说明:
1、f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2) , 即V型,为“凸向原点”,或“下凸”(也可说上凹),(有的简称凸有的简称凹)
2、f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2) , 即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)
凸/凹向原点这种说法一目了然。上下凸的说法也没有歧义[2]
在二维环境下,就是通常所说的平面直角坐标系中,可以通过画图直观地看出一条二维曲线是凸还是凹,当然它也对应一个解析表示形式,就是那个不等式。但是,在多维情况下,图形是画不出来的,这就没法从直观上理解“凹”和“凸“的含义了,只能通过表达式,当然n维的表达式比二维的肯定要复杂,但是,不管是从图形上直观理解还是从表达式上理解,都是描述的同一个客观事实。而且,按照函数图形来定义的凹凸和按照函数来定义的凹凸正好相反。
琴生(Jensen)不等式(也称为詹森不等式):(注意前提、等号成立条件)设f(x)为凸函数,则f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);设f(x)为凹函数,f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n(上凸),称为琴生不等式。
加权形式为:f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中ai≥0(i=1,2,……,n),且a1+a2+……+an=1.
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
就是二阶导的问题,图形是(向上)凹的,或图形是(向上)凸的
设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1]
f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),
若不等号严格成立,即"<"号成立,则称f(x)在I上是严格凹函数。
如果"<="换成">="就是凸函数。类似也有严格凸函数。[1]
设f(x)在区间D上连续,如果对D上任意两点a、b恒有
f((a+b)/2)<(f(a)+f(b))/2
那么称f(x)在D上的图形是(向上)凹的(或凹弧);如果恒有
f((a+b)/2)>(f(a)+f(b))/2
那么称f(x)在D上的图形是(向上)凸的(或凸弧)
这个定义从几何上看就是:
在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。[1]
直观上看,凸函数就是图象向上突出来的。比如
如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凹函数的充要条件是f''(x)>=0;f(x)在区间I上是凸函数的充要条件是f''(x)<=0;[1-2]
不过补充一下,中国数学界关于函数凹凸性定义和国外很多定义是反的。Convex
Function在国内的数学书中指凹函数。Concave
Function指凸函数。在国内涉及经济学的很多书中,凹凸性的提法和国外的提法是一致的,也就是和单纯的数学教材是反的。很头大的问题。[1]
另外,国内各不同学科教材、辅导书的关于凹凸的说法也是相反的。一般来说,可按如下方法准确说明:
1、f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2)
,
即V型,为“凸向原点”,或“下凸”(也可说上凹),(有的简称凸有的简称凹)
2、f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2)
,
即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)
凸/凹向原点这种说法一目了然。上下凸的说法也没有歧义[2]
在二维环境下,就是通常所说的平面直角坐标系中,可以通过画图直观地看出一条二维曲线是凸还是凹,当然它也对应一个解析表示形式,就是那个不等式。但是,在多维情况下,图形是画不出来的,这就没法从直观上理解“凹”和“凸“的含义了,只能通过表达式,当然n维的表达式比二维的肯定要复杂,但是,不管是从图形上直观理解还是从表达式上理解,都是描述的同一个客观事实。而且,按照函数图形来定义的凹凸和按照函数来定义的凹凸正好相反。
琴生(Jensen)不等式(也称为詹森不等式):(注意前提、等号成立条件)设f(x)为凸函数,则f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);设f(x)为凹函数,f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n(上凸),称为琴生不等式。
加权形式为:f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中ai≥0(i=1,2,……,n),且a1+a2+……+an=1.
设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有[1]
f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2),
若不等号严格成立,即"<"号成立,则称f(x)在I上是严格凹函数。
如果"<="换成">="就是凸函数。类似也有严格凸函数。[1]
设f(x)在区间D上连续,如果对D上任意两点a、b恒有
f((a+b)/2)<(f(a)+f(b))/2
那么称f(x)在D上的图形是(向上)凹的(或凹弧);如果恒有
f((a+b)/2)>(f(a)+f(b))/2
那么称f(x)在D上的图形是(向上)凸的(或凸弧)
这个定义从几何上看就是:
在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。[1]
直观上看,凸函数就是图象向上突出来的。比如
如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凹函数的充要条件是f''(x)>=0;f(x)在区间I上是凸函数的充要条件是f''(x)<=0;[1-2]
不过补充一下,中国数学界关于函数凹凸性定义和国外很多定义是反的。Convex
Function在国内的数学书中指凹函数。Concave
Function指凸函数。在国内涉及经济学的很多书中,凹凸性的提法和国外的提法是一致的,也就是和单纯的数学教材是反的。很头大的问题。[1]
另外,国内各不同学科教材、辅导书的关于凹凸的说法也是相反的。一般来说,可按如下方法准确说明:
1、f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2)
,
即V型,为“凸向原点”,或“下凸”(也可说上凹),(有的简称凸有的简称凹)
2、f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2)
,
即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)
凸/凹向原点这种说法一目了然。上下凸的说法也没有歧义[2]
在二维环境下,就是通常所说的平面直角坐标系中,可以通过画图直观地看出一条二维曲线是凸还是凹,当然它也对应一个解析表示形式,就是那个不等式。但是,在多维情况下,图形是画不出来的,这就没法从直观上理解“凹”和“凸“的含义了,只能通过表达式,当然n维的表达式比二维的肯定要复杂,但是,不管是从图形上直观理解还是从表达式上理解,都是描述的同一个客观事实。而且,按照函数图形来定义的凹凸和按照函数来定义的凹凸正好相反。
琴生(Jensen)不等式(也称为詹森不等式):(注意前提、等号成立条件)设f(x)为凸函数,则f[(x1+x2+……+xn)/n]≤[f(x1)+f(x2)+……+f(xn)]/n(下凸);设f(x)为凹函数,f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n(上凸),称为琴生不等式。
加权形式为:f[(a1*x1+a2*x2+……+an*xn)]≤a1f(x1)+a2f(x2)+……+anf(xn)(下凸);f[(a1*x1+a2*x2+……+an*xn)]≥a1f(x1)+a2f(x2)+……+anf(xn)(上凸),其中ai≥0(i=1,2,……,n),且a1+a2+……+an=1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询