已知△ABC为边长为10的等边三角形,D是BC边上一动点: ①如图1,点E在AC上,且BD=CE,BE交AD

已知△ABC为边长为10的等边三角形,D是BC边上一动点:①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化?若不变,请求出其度数... 已知△ABC为边长为10的等边三角形,D是BC边上一动点: ①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化?若不变,请求出其度数。②如图2,过点D作∠ADG=60°与∠ACB的外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG的值为定值;②DG-CD的值为定值.其中有且只有一个是正确的,请你选择正确的结论加以证明并求出其值。 展开
 我来答
林贝斡16
推荐于2017-09-25 · TA获得超过106个赞
知道答主
回答量:143
采纳率:66%
帮助的人:72万
展开全部

解:①∠AFE的大小不变,其度数为60°,理由为:
∵△ABC为等边三角形,
∴AB=BC,∠ABD=∠C=60°,
在△ABD和△BCE中,

∴△ABD≌△BCE(SAS),
∴∠BAD=∠CBE,
又∵∠BAD+∠ADB=120°,
∴∠CBE+∠ADB=120°,
∴∠BFD=60°,
则∠AFE=∠BFD=60°;
②正确的结论为:DC+CG的值为定值,理由如下:
连接AG,如图2所示:

∵△ABC为等边三角形,
∴AB=BC=AC,∠ABD=∠ACB=∠BAC=60°,
又CG为∠ACB的外角平分线,
∴∠ACG=60°,
又∵∠ADG=60°,
∴∠ADG=∠ACG,即A,D,C,G四点共圆,
∴∠DAG+∠DCG=180°,
又∵∠DCG=120°,
∴∠DAG=60°,
即∠DAC+∠CAG=60°,
又∵∠BAD+∠DAC=60°,
∴∠BAD=∠GAC,
在△ABD和△ACG中,

∴△ABD≌△ACG(ASA),
∴DB=GC,又BC=10,
则BC=BD+DC=DC+CG=10,
即DC+CG的值为定值。


推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式