小华将一张矩形纸片(如图1)沿对角线CA剪开,得到两张三角形纸片(如图2),其中∠ACB=α,然后将这两

主要是第二问我是用因为MB=MD,所以AG为∠BAG的角平分线(角平分线到两边的距离相等),所以BG=GD,然后就求出四边形MBGD为菱形(MB=MD,BG=GD).所以... 主要是第二问我是用因为MB=MD,所以AG为∠BAG的角平分线(角平分线到两边的距离相等),所以BG=GD,然后就求出四边形MBGD为菱形(MB=MD,BG=GD).所以MD平行BC,所以∠ADM=∠DCG=a,由第一问知AM=AD,所以∠MAD=∠ADM,所以∠ADM=a,所以∠GMD=2∠ADM(三角形的外角和)=2a,所以∠BMD=2∠GMD=4a
答案是180°-2a啊,我确实不知道哪里出错了,应该那些规律没用错吧,哪位好心人帮帮忙看看谢谢!!!
展开
帐号已注销
2011-08-10 · TA获得超过6146个赞
知道小有建树答主
回答量:1170
采纳率:0%
帮助的人:946万
展开全部
BG≠GD解:(1)MB=MD,
证明:∵AG的中点为M∴在Rt△ABG中,MB= 12AG
在Rt△ADG中,MD= 12AG
∴MB=MD.

(2)∵∠BMG=∠BAM+∠ABM=2∠BAM,
同理∠DMG=∠DAM+∠ADM=2∠DAM,
∴∠BMD=2∠BAM+2∠DAM=2∠BAC,
而∠BAC=90°-α,
∴∠BMD=180°-2α,
∴当α=45°时,∠BMD=90°,此时△BMD为等腰直角三角形.

(3)当△CGD绕点C逆时针旋转一定的角度,仍然存在MB=MD,
∠BMD=180°-2α,
故当α=60°时,△BMD为等边三角形.
解法:延长DM至N,使MN=DM,连AN、BN、BD,则有AN=DH,∠NAM=∠DHM
∵∠BAM+90°=∠AHD+90°-∠DCB,
∴∠NAB=∠DCB,
∵∠CDH=∠ABC=90°,∠DCH=∠BCA,
∴△CDH∽△CBA,
∴DH:AB=CD:BC,
∴AN:AB=CD:BC,
∴△NAB∽△DCB,
∴∠NBA=∠DBC
∴∠NBD=90°,
∴BM=MD,
由△NAB∽△DCB得NB:AB=BD:BC
∴△NBD∽△ABC,
∴∠BNM=∠BAC,
∵∠BMD=2∠BNM
∴∠BMD=2(90°-α)=180°-2α.
追问
不是角平分线到两边的距离相等吗?
追答
BG和GD垂直两边吗
liyiok01
2012-11-04 · TA获得超过2599个赞
知道小有建树答主
回答量:690
采纳率:25%
帮助的人:74.8万
展开全部
解:(1)MB=MD,
证明:∵AG的中点为M∴在Rt△ABG中,MB=12AG
在Rt△ADG中,MD=12AG
∴MB=MD.

(2)∵∠BMG=∠BAM+∠ABM=2∠BAM,
同理∠DMG=∠DAM+∠ADM=2∠DAM,
∴∠BMD=2∠BAM+2∠DAM=2∠BAC,
而∠BAC=90°-α,
∴∠BMD=180°-2α,
∴当α=45°时,∠BMD=90°,此时△BMD为等腰直角三角形.

(3)当△CGD绕点C逆时针旋转一定的角度,仍然存在MB=MD,
∠BMD=180°-2α,
故当α=60°时,△BMD为等边三角形.
解法:延长DM至N,使MN=DM,连AN、BN、BD,则有AN=DH,∠NAM=∠DHM
∵∠1=∠AHD+∠2
∴∠BAM+90°=∠AHD+90°-∠DCB,
∴∠NAB=∠DCB,
∵∠CDH=∠ABC=90°,∠DCH=∠BCA,
∴△CDH∽△CBA,
∴DH:AB=CD:BC,
∴AN:AB=CD:BC,
∴△NAB∽△DCB,
∴∠NBA=∠DBC
∴∠NBD=90°,
∴BM=MD,
由△NAB∽△DCB得NB:AB=BD:BC
∴△NBD∽△ABC,
∴∠BNM=∠BAC,
∵∠BMD=2∠BNM
∴∠BMD=2(90°-α)=180°-2α.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式