设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)不等于0,f'(0)不等于 0,若af(h)+bf(2h)-f(0)在h趋向于
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
1个回答
展开全部
解:
由已知,h->0时a*f(h)+b*f(2h)-f(0)是h 的高阶无穷小,有:
lim(h->0)[a*f(h)+b*f(2h)-f(0)]/h =0
==> lim(h->0)[a*f(h)-a*f(0)+b*f(2h)-b*f(0)+(a+b)*f(0)-f(0)]/h =0
==> lim(h->0){a*[f(h)-f(0)]/h + 2b*[f(2h)-f(0)]/(2h) + (a+b-1)*f(0)/h} =0
==> (a+2b)*f’(0) + lim(h->0)[(a+b-1)*f(0)/h] =0
f(x)在 x=0邻域连续可导,因此f'(0)有界
lim(h->0)[(a+b-1)*f(0)/h] 中f(0)≠0,因此必有 a+b-1 = 0; ----(1)
==> lim(h->0)[(a+b-1)*f(0)/h] = 0;
==> (a+2b)*f’(0) =0;
f’(0) ≠0 ==> a+2b = 0; ---(2)
(1)(2)联立解得:
a=2, b=-1;
由已知,h->0时a*f(h)+b*f(2h)-f(0)是h 的高阶无穷小,有:
lim(h->0)[a*f(h)+b*f(2h)-f(0)]/h =0
==> lim(h->0)[a*f(h)-a*f(0)+b*f(2h)-b*f(0)+(a+b)*f(0)-f(0)]/h =0
==> lim(h->0){a*[f(h)-f(0)]/h + 2b*[f(2h)-f(0)]/(2h) + (a+b-1)*f(0)/h} =0
==> (a+2b)*f’(0) + lim(h->0)[(a+b-1)*f(0)/h] =0
f(x)在 x=0邻域连续可导,因此f'(0)有界
lim(h->0)[(a+b-1)*f(0)/h] 中f(0)≠0,因此必有 a+b-1 = 0; ----(1)
==> lim(h->0)[(a+b-1)*f(0)/h] = 0;
==> (a+2b)*f’(0) =0;
f’(0) ≠0 ==> a+2b = 0; ---(2)
(1)(2)联立解得:
a=2, b=-1;
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询