高中数学,过抛物线焦点F的直线叫抛物线于A、B两点
过抛物线焦点F的直线叫抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴。要详解,谢了。...
过抛物线焦点F的直线叫抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴。要详解,谢了。
展开
1个回答
展开全部
设抛物线方程为y^2=2px(p>0),①则它的顶点为O(0,0),焦点F为(p/2,0),
设过F的直线为x=my+p/2,②与抛物线交于A(x1,y1),B(x2,y2),
把②代入①,y^2-2mpy-p^2=0,
y1+y2=2mp,y1y2=-p^2,③
x1=y1^2/(2p),
∴2x1y2+py1=y1^2*y2/p+py1=y1[y1y2/p+p]=0,
OA:y=(y1/x1)x交准线:x=-p/2于点D(-p/2,-py1/(2x1)),
∴DB的斜率=[y2+py1/(2x1)]/(x2+p/2)=0,
由③,y2≠0,
∴直线DB平行抛物线的对称轴(x轴)。
设过F的直线为x=my+p/2,②与抛物线交于A(x1,y1),B(x2,y2),
把②代入①,y^2-2mpy-p^2=0,
y1+y2=2mp,y1y2=-p^2,③
x1=y1^2/(2p),
∴2x1y2+py1=y1^2*y2/p+py1=y1[y1y2/p+p]=0,
OA:y=(y1/x1)x交准线:x=-p/2于点D(-p/2,-py1/(2x1)),
∴DB的斜率=[y2+py1/(2x1)]/(x2+p/2)=0,
由③,y2≠0,
∴直线DB平行抛物线的对称轴(x轴)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询