
设f(x)在【0,1】上连续,在(0,1)内可导,且f(1)=0.证明:存在ξ∈(0,1),使f'(ξ)=-f(ξ)/ξ
设f(x)在【0,1】上连续,在(0,1)内可导,且f(1)=0.证明:存在ξ∈(0,1),使f'(ξ)=-f(ξ)/ξ...
设f(x)在【0,1】上连续,在(0,1)内可导,且f(1)=0.证明:存在ξ∈(0,1),使f'(ξ)=-f(ξ)/ξ
展开
2个回答
展开全部
证明:
令g(x)=xf(x),g'(x)=f(x)+xf'(x)
∵f(x)在[0,1]连续,在(0,1)可导
∴g(x)在[0,1]连续,在(0,1)可导
∵g(0)=0,g(1)=f(1)=0
∴根据罗尔中值定理知道,
存在ξ∈(0,1)使得g'(ξ)=0
∴g'(ξ)=f(ξ)+ξf'(ξ)=0
∴f'(ξ)=-f(ξ) /ξ
命题得证
令g(x)=xf(x),g'(x)=f(x)+xf'(x)
∵f(x)在[0,1]连续,在(0,1)可导
∴g(x)在[0,1]连续,在(0,1)可导
∵g(0)=0,g(1)=f(1)=0
∴根据罗尔中值定理知道,
存在ξ∈(0,1)使得g'(ξ)=0
∴g'(ξ)=f(ξ)+ξf'(ξ)=0
∴f'(ξ)=-f(ξ) /ξ
命题得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询