
已知函数f(x)=x|x-2|.(1)写出f(x)的单调区间;(2)解不等式f(x)<3;(3)设a>0,求f(x)在[
已知函数f(x)=x|x-2|.(1)写出f(x)的单调区间;(2)解不等式f(x)<3;(3)设a>0,求f(x)在[0,a]上的最大值....
已知函数f(x)=x|x-2|.(1)写出f(x)的单调区间;(2)解不等式f(x)<3;(3)设a>0,求f(x)在[0,a]上的最大值.
展开
展开全部
(1)函数f(x)=x|x-2|=
.
∴f(x)的单调递增区间是(-∞,1]和[2,+∞);单调递减区间是[1,2]
(2)f(x)<3等价于
或
∴2≤x<3或x<2
∴不等式f(x)<3的解集为{x|x<3}
(3)①当0<a<1时,f(x)是[0,a]上的增函数,此时(x)在[0,a]上的最大值是f(a)=a(2-a);
②当1≤a≤2时,f(x)在[0 1]上是增函数,在[1,a]上是减函数,此时f(x)在[0 a]上的最大值是f(1)=1
③当a>2时,令f(a)-f(1)=a(a-2)-1=a2-2a-1>0,解得a>1+
(ⅰ)当2<a≤1+
|
∴f(x)的单调递增区间是(-∞,1]和[2,+∞);单调递减区间是[1,2]
(2)f(x)<3等价于
|
|
∴2≤x<3或x<2
∴不等式f(x)<3的解集为{x|x<3}
(3)①当0<a<1时,f(x)是[0,a]上的增函数,此时(x)在[0,a]上的最大值是f(a)=a(2-a);
②当1≤a≤2时,f(x)在[0 1]上是增函数,在[1,a]上是减函数,此时f(x)在[0 a]上的最大值是f(1)=1
③当a>2时,令f(a)-f(1)=a(a-2)-1=a2-2a-1>0,解得a>1+
2 |
(ⅰ)当2<a≤1+