定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2k(其中k是使n2k为
定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2k(其中k是使n2k为奇数的正整数),并且运算重复进行.例如,取n=26,则:若...
定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2k(其中k是使n2k为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是______.
展开
1个回答
展开全部
本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n=449为奇数应先进行F①运算,
即3×449+5=1352(偶数),
需再进行F②运算,
即1352÷23=169(奇数),
再进行F①运算,得到3×169+5=512(偶数),
再进行F②运算,即512÷29=1(奇数),
再进行F①运算,得到3×1+5=8(偶数),
再进行F②运算,即8÷23=1,
再进行F①运算,得到3×1+5=8(偶数),…,
即第1次运算结果为1352,…,
第4次运算结果为1,第5次运算结果为8,…,
可以发现第6次运算结果为1,第7次运算结果为8,
从第6次运算结果开始循环,且奇数次运算的结果为8,偶数次为1,而第499次是奇数,
这样循环计算一直到第449次“F运算”,得到的结果为8.
故本题答案为:8.
即3×449+5=1352(偶数),
需再进行F②运算,
即1352÷23=169(奇数),
再进行F①运算,得到3×169+5=512(偶数),
再进行F②运算,即512÷29=1(奇数),
再进行F①运算,得到3×1+5=8(偶数),
再进行F②运算,即8÷23=1,
再进行F①运算,得到3×1+5=8(偶数),…,
即第1次运算结果为1352,…,
第4次运算结果为1,第5次运算结果为8,…,
可以发现第6次运算结果为1,第7次运算结果为8,
从第6次运算结果开始循环,且奇数次运算的结果为8,偶数次为1,而第499次是奇数,
这样循环计算一直到第449次“F运算”,得到的结果为8.
故本题答案为:8.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |