【高中函数问题】已知函数F(x)=-1/4x^4+ax^3+(a^2+5a-2)x^2/2+b (a、b为常数) 急急急急。。。
1.当a=1时,F(x)=0有两个不相等的实根谋求b的范围2.若F(x)有三个不同的即致电0,x1,x2.a为何值时,能使函数F(x)在x1(或x2)处取得的极值为b3....
1.当a=1时,F(x)=0有两个不相等的实根谋求b的范围
2.若F(x)有三个不同的即致电0,x1,x2. a为何值时,能使函数F(x)在x1(或x2)处取得的极值为b
3.若对任意a∈[-1,0]不等式F(x)>=-8在[-2,2]上恒成立,求b的范围 展开
2.若F(x)有三个不同的即致电0,x1,x2. a为何值时,能使函数F(x)在x1(或x2)处取得的极值为b
3.若对任意a∈[-1,0]不等式F(x)>=-8在[-2,2]上恒成立,求b的范围 展开
3个回答
展开全部
1.
当a=1时
F(x)=-1/4x^4+x^3+(1^2+5-2)x^2/2+b
=-1/4x^4+x^3+2x^2+b
求导得:
F '(x)=-x^3+3x^2+4x
=-x(x^2-3x-4)
=-x(x-4)(x+1)
令F '(x)>0得:
x∈(-∞,-1)∪(0,4)
令F '(x)<0得:
x∈(-1,0)∪(4,+∞)
∴F(x)于(-∞,-1),(0,4)↗
于(-1,0),(4,+∞)↘
∵F(x)=0有两个不相等的实根
∴有:
情况①:
F(0)>0
即b>0
情况②:
F(-1)>0>F(4)
即¼-1+2+b>0>4³+4³+2×4²+b不成立
情况③:
F(-1)<0<F(4)
即¼-1+2+b<0<4³+4³+2×4²+b恒成立
综上,b>0
2.
求导该函数,得导函数为
F '(x)=-x[x^2-3ax-(a^2+5a-2)]
=-x[x^2-3ax-(a^2+5a-2)]
∵F(x)有三个不同的即致电0,x1,x2
∴F '(x1)=F '(x2)=0
即x1^2-3ax1-(a^2+5a-2)=x2^2-3ax2-(a^2+5a-2)=0⑴
∴若F(x1)=x1²[-1/4x1^2+ax1+(a^2+5a-2)/2]+b=b
即x1²[-1/4x1^2+ax1+(a^2+5a-2)/2]=0
即[-1/4x1^2+ax1+(a^2+5a-2)/2]=0
即x1^2-4ax1-2(a^2+5a-2)=0⑵
⑴-⑵得
ax1+a^2+5a-2=0
x1=a+5-2/a(a≠0)
将x1=a+5-2/a代入⑴得并且化简后解得(化简过程有点繁琐,若楼主仍然需要过程可在追问中追问我):
(a-1)[a-(2/3)](-3a²-15a+6)=0
a1=1,a2=2/3,a3=(-5-√33)/2,a4=(-5+√33)/2
3.
求导该函数,得导函数为
F '(x)=-x[x^2-3ax-(a^2+5a-2)]
由于括号“[]”中的函数的判别式
△=9a^2+4(a^2+5a-2)
=11a^2+20a-8
在a∈[-1,0]时△<0恒成立
∴x^2-3ax-(a^2+5a-2)>0恒成立
∴原函数的导数在x∈[-2,0]时为+,x∈[0,2]时为-
即x=0时原函数取最小值。
∴F(x)min=F(0)=b≥-8
所以b≥-8
楼主啊,这可是绝世烦题啊!+点悬赏分吧≥﹏≤
当a=1时
F(x)=-1/4x^4+x^3+(1^2+5-2)x^2/2+b
=-1/4x^4+x^3+2x^2+b
求导得:
F '(x)=-x^3+3x^2+4x
=-x(x^2-3x-4)
=-x(x-4)(x+1)
令F '(x)>0得:
x∈(-∞,-1)∪(0,4)
令F '(x)<0得:
x∈(-1,0)∪(4,+∞)
∴F(x)于(-∞,-1),(0,4)↗
于(-1,0),(4,+∞)↘
∵F(x)=0有两个不相等的实根
∴有:
情况①:
F(0)>0
即b>0
情况②:
F(-1)>0>F(4)
即¼-1+2+b>0>4³+4³+2×4²+b不成立
情况③:
F(-1)<0<F(4)
即¼-1+2+b<0<4³+4³+2×4²+b恒成立
综上,b>0
2.
求导该函数,得导函数为
F '(x)=-x[x^2-3ax-(a^2+5a-2)]
=-x[x^2-3ax-(a^2+5a-2)]
∵F(x)有三个不同的即致电0,x1,x2
∴F '(x1)=F '(x2)=0
即x1^2-3ax1-(a^2+5a-2)=x2^2-3ax2-(a^2+5a-2)=0⑴
∴若F(x1)=x1²[-1/4x1^2+ax1+(a^2+5a-2)/2]+b=b
即x1²[-1/4x1^2+ax1+(a^2+5a-2)/2]=0
即[-1/4x1^2+ax1+(a^2+5a-2)/2]=0
即x1^2-4ax1-2(a^2+5a-2)=0⑵
⑴-⑵得
ax1+a^2+5a-2=0
x1=a+5-2/a(a≠0)
将x1=a+5-2/a代入⑴得并且化简后解得(化简过程有点繁琐,若楼主仍然需要过程可在追问中追问我):
(a-1)[a-(2/3)](-3a²-15a+6)=0
a1=1,a2=2/3,a3=(-5-√33)/2,a4=(-5+√33)/2
3.
求导该函数,得导函数为
F '(x)=-x[x^2-3ax-(a^2+5a-2)]
由于括号“[]”中的函数的判别式
△=9a^2+4(a^2+5a-2)
=11a^2+20a-8
在a∈[-1,0]时△<0恒成立
∴x^2-3ax-(a^2+5a-2)>0恒成立
∴原函数的导数在x∈[-2,0]时为+,x∈[0,2]时为-
即x=0时原函数取最小值。
∴F(x)min=F(0)=b≥-8
所以b≥-8
楼主啊,这可是绝世烦题啊!+点悬赏分吧≥﹏≤
展开全部
It is the wildest dream of every woman to look attractive, stunning,wholesale jeans, revealing, sexy and beautiful in order to draw or attract the attention of the beholders and onlookers of the opposite sex. The wholesale sexy dresses are easily available in the wholesale clothing industry that contributes tremendously in shedding off the unnecessary tensions of the women who wish to enhance their personal as well as social lives by flaunting in these wholesale dresses. The wide range of wholesale party dresses include wholesale sexy lingerie,wholesale max shoes, wholesale evening gowns, wholesale cocktail dresses, wholesale prom gowns, wholesale bridesmaid dresses and wholesale prom dresses. There are various times when most of the women get rid of their boring attitude and style and want to experiment with something latest and trendy in order to change their ordinary look. This can easily be done by switching over to the stunning and sexy clothing range available in excellent stores. By adding the wide variety of wholesale dresses and wholesale lingerie to one's existing wardrobe, a stunning change in the overall look and personality can be witnessed The wholesale dresses such as wholesale evening gowns, wholesale prom dresses and wholesale cocktail dresses have been specially designed and introduced after proper consideration on the desires and likings of the women of today who want to look all the more stylish and contemporary. Some of the essential aspects of these wholesale sexy dresses like the style, flow, cuts and fabric have been designed by taking all the important factors so that these modern women can avail the facilities of wearing these beautiful wholesale evening dresses. The wholesale prom gowns, wholesale party dresses,wholesale watches, wholesale bridesmaid dresses and wholesale evening dresses provide the facility of getting a huge collection of these clothing styles launched each year so that the trendy women can be provided with the best of the designs. Also, these dresses contribute tremendously in allowing the desperate women to have a completely different yet exciting look. The different styles and designs available in wholesale prom dresses, wholesale prom gowns and wholesale evening gowns are ideal for the high-school beautiful girls who desire to look all the more stunning, revealing and ravishing on the evening parties and prom nights. The most striking aspect of the wholesale party dresses like wholesale cocktail dresses and wholesale sexy dresses is that they can easily be purchased indifferent sizes, shapes, material and color combinations so that even the ugliest of ducklings can look mind blowing and charming. The wholesale lingerie,wholesale hair straightener, wholesale bridesmaid dresses and wholesale sexy lingerie are demanded and admired by a large number of women due to the fact that they contributes a lot in revealing the true intensity and passionate side in a women. This wholesale sexy lingerie is highly liked as by wearing it, the women can seduce or lure her partner thereby making their sexual life more passionate, horny and wild. Last but not least, the wholesale lingerie can actually show a woman's true taste, beauty and mood. The wide collection of wholesale sexy lingerie includes long gowns, stockings, costumes, skirts, bras, camisoles, garter belts, gowns and panties. So,wholesale from china, get yourself stunning lingerie or a charming evening dress and add points to your natural beauty.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-08-10
展开全部
题目上是不是不太清楚?
更多追问追答
追问
能指出那点不清楚么。。。我是从作业上打的。。
追答
-1/4x^4是指四分之一的x的四次方还是四x的四次方分之一
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询